

Implementing the CIDOC Conceptual
Reference Model in RDF
Version 1.0
Martin Doerr, Richard Light, Gerald Hiebel
January 2020

Introduction
The CIDOC Conceptual Reference Model (the “CRM”) [1] is defined in terms of an
object-oriented metamodel[2]. It is an abstract, logical expression of the concepts and
relationships (or classes and properties) which are relevant to cultural heritage
documentation. In its native form it can be used to analyse and compare different standards
and systems. For this purpose, there is no need to be concerned with implementation
details, which vary between encoding paradigms and over time. Since the first conception of
the CIDOC CRM, object-oriented and the related knowledge representation models have
changed frequently: OMG standards, KL-ONE, TELOS, KIF, DAML, OIL, to name just a few.
Therefore, these are typically not specified in the Definition of the CRM.
 The CIDOC CRM however has been promoted as ISO standard when RDF became a W3C
recommendation in 1998, the first knowledge representation model to acquire a status of an
international recommendation, which, by the way, did not deviate substantially from the one
used to define the CIDOC CRM. Nevertheless, the CIDOC CRM has not been defined using
RDF Schema itself, because it aims at providing the widest possible logical basis for
comparing and integrating data implemented under different encoding paradigms, seeking a
compromise between useful expressive power for the ontology and enough simplicity to be
implementable in different relevant encoding paradigms, either directly by their built-in
constructs or requiring some additional S/W code. In the meanwhile, RDF is also
undergoing its own evolution becoming refined and extended by OWL. Therefore the CIDOC
CRM maintains a logical form which is independent from RDF.
Characteristically, the original CRM object-oriented model uses constructs, such as
‘properties of properties’, which cannot be expressed in RDF, and a set of logical deductions
(such as the “shortcuts”), which can be implemented with additional code or by the standard
query system in relevant current database or knowledge base types.
Another serious reason for keeping the logical independence lies in a much more subtle, but
fundamental difference between describing things in the world in terms of logic and
describing data by a data definition and encoding language, which becomes most apparent
when distinguishing between real world things and their identifiers and when describing
mathematical value spaces, which is necessarily common to all data encoding paradigms,
including RDF. The logical-ontological compatibility of data implemented in different data
definition and encoding languages cannot be defined based on a data definition or encoding
language.

RDF is currently the knowledge encoding paradigm closest to the CIDOC CRM and the most
widely spread. Therefore, for each official release of the CRM, an RDF Schema expression
of the CRM will be published as official resource on the CIDOC CRM web site[3]. However,
on its own this Schema does not contain sufficient information to allow potential
implementers to design a complete CRM-compatible framework in RDF, as indicated above.
Also, particular global identification conventions of CRM RDF implementations of different
CRM versions need explanation.
The aim of this document is to complement the Definition of the CRM and the respective
RDF Schema implementation by providing guidance on recommended techniques for using
the CIDOC CRM within an RDF implementation, for instance running on an RDF-enabled
Triple Store or Graph database.

The CRM RDF Schema
The CRM RDF Schema defines most[4] of the classes and properties which make up the
CRM, and specifies the domain and range of these. Furthermore, the URLs specified in the
Schema (with base http://www.cidoc-crm.org/cidoc-crm/) act as valid dereferenceable Linked
Data identifiers. So you can define a CRM prefix:

@PREFIX crm: <http://www.cidoc-crm.org/cidoc-crm/>

and then use CRM identifiers (e.g. “crm:P53_Place”) freely within your data.
The following design decisions have been taken when designing the CRM RDF Schema.
(These will appear as a comment at the start of the CRM RDF Schema document)

The Equivalent Part
Here we describe the part of the CRM RDF Schema that corresponds one-to-one to the
Definition of the CIDOC CRM.
1. The RDF class and property naming rules do not allow “space” characters. Hence the
“space” character is replaced in RDF names by the “underscore” (spacing underscore, low
line, horizontal bar) character. For instance "E63 Beginning of Existence" becomes in RDF
"E63_Beginning_of_Existence" or "P2i is type of" becomes in RDF "P2i_is_type_of".
2. RDF does not allow one to instantiate bi-directional properties. Therefore, each CRM
property is represented as two RDFS properties, each with a specific “direction”. For
instance "P2 has type (is type of)" is represented as:
● "P2_has_type" for the domain to range direction
● "P2i_is_type_of" for the range to domain direction
The only logical distinction between the two directions is the fact of inverse reading. In the
recommended OWL version[5], this is explicated by declaring one direction as “inverse_of”
the other. Practically, this means that an implementation may decide to replace one direction
with the opposite via software, exchanging domain and range accordingly, or add or remove
one direction for convenience without affecting compatibility or meaning. This can be useful
for optimizing display, storage or querying.
3. Scope notes within the Schema are represented as <rdfs:comment> elements.

http://www.cidoc-crm.org/cidoc-crm/
http://www.cidoc-crm.org/cidoc-crm/

4. The encoding contains labels in languages other than English, which are taken from the
latest translations of current or previous versions of the CIDOC CRM.
5. Any other differences in labels, scope notes and semantic relationships of this encoding
from the respective authoritative definition of the CIDOC CRM are unintended transfer errors
and not alternative definitions. The authoritative reference is the textual definition of the
CIDOC CRM and not the RDF Schema. FORTH appreciates your feedback on such errors.
6. RDF does not support properties of properties. Therefore, users are recommended two
ways to work around:
· The current properties of properties in the CRM have all as range “E55 Type”.
Therefore they correspond to subtyping of the respective property by a local vocabulary.
· For the cases in which the local vocabulary is not fixed, there is a recommended form
of reification via an auxiliary “property class”. This replaces the former recommendation to
use E13 Attribute assignment in order to introduce user defined property types.
See section below on properties of properties about the pros and cons.

Implementing Datatypes

Among the entities information systems can refer to, one can distinguish those that cannot
reside in an information system itself because of their nature, such as people, material
objects, weather etc. and their interactions, from those that can have exhaustive
representations in an information system, such as texts, numbers etc., because they are
generically digital in nature[6]. Those that cannot reside in the information system, we can
only refer to by identifiers. For those that can exhaustively be represented, all data models
offer some elementary “built-in” datatypes, such as “integer”, “char”, “string”, “real”. They are
recognized syntactically, and not by classification, and their identity is given by their
“content” and their syntactic type. Consequently any occurrence of the same content is
identical, regardless the context of reference[7].

Therefore, the CIDOC CRM, being an ontology and not a data model, refers to them in an
abstract way as instances of “E59 Primitive Value”. To which degree they are actually
“primitive” or elementary, or composed of more elementary ones, such as dates, is not the
critical characteristic, but the fact, that their identity is completely defined by the syntactic
type and digital content. In purpose, they match exactly with rdfs:Datatype.
The class E59 Primitive Value “comprises values of primitive data types of programming
languages or database management systems and datatypes composed of such values used
as documentation elements, as well as their mathematical abstractions”.
They are not considered as elements of the universe of discourse this model aims at
defining and analysing. Rather, they play the role of a symbolic interface between the scope
of this model and the world of mathematical and computational manipulations and the
symbolic objects they define and handle.
In particular they comprise lexical forms encoded as "strings" or series of characters and
symbols based on encoding schemes (characterised by being a limited subset of the

respective mathematical abstractions) such as UNICODE and values of datatypes that can
be encoded in a lexical form, including quantitative specifications of time-spans and
geometry. They have in common that instances of E59 Primitive Value define themselves by
virtue of their encoded value, regardless the nature of their mathematical abstractions.
Therefore they should not be represented in an implementation by a universal identifier
associated with a content model of different identity. In a concrete application, it is
recommended that the primitive value system from a chosen implementation platform and/or
data definition language be used to substitute for this class and its subclasses”[8].

For encoding the CIDOC CRM in RDF this translates to trying to find suitable RDF
datatypes, to the degree there is an equivalence with respective subclasses of E59 Primitive
Value, or at least finding datatypes that represent wide enough value ranges for typical
applications. It must however be understood that datatypes typically implement only subsets
of values of respective mathematical spaces, whereas an ontological definition refers to the
mathematical space itself. For instance, an “integer” value may be limited to 32 bits, which is
“nearly nothing” against the unlimited size of natural numbers, but much more than most
applications will ever encounter in object descriptions. Nevertheless, data referring to values
outside of a particular datatype, but inside the respective mathematical space, must be
regarded compatible with the CRM.

In principle, the literal encoding of mathematical values is unlimited, if the respective platform
can represent unlimited literals. Consequently, rdfs:Literal is the superclass of all RDFS
datatypes (“Each instance of rdfs:Datatype is a subclass of rdfs:Literal.” in: RDF Schema
1.1). Therefore, all properties of the CRM having a primitive value as range are compatible
with using rdfs:Literal or an adequate datatype, as long as the meaning is compatible. Since
this does not provide a particular guidance how to encode values nor any more formal
constraints,we analyze in this document separately each subclass of E59 Primitive Value
and the use of rdfs:label for their compatibility with RDFS datatypes and make detailed
recommendations.
Nevertheless, applications may encounter cases in which no datatype recommended by
RDFS or recommended below does fit the required value range. In that case it is
recommended to find other standards to represent these values in an XSD-compatible form
and to store them in an rdfs:Literal. More details are also given in the section “Defining
custom datatypes”.

Recording dates
The range of the properties "P81 ongoing throughout" and "P82 at some time within" are
defined in the CRM as E61 Time Primitive. Instance of E61 Time Primitive are defined as
closed intervals on the natural time dimension in which we live.
Since the E61 Time Primitive of the CRM cannot be expressed in RDFS directly, in the
official RDF implementation of the CIDOC CRM, we define four properties in the CRM
RDFS: “P82a_begin_of_the_begin”, “P82b_end_of_the_end”, “P81a_end_of_the_begin”,
“P81b_begin_of_the_end”, all with range xsd:dateTime, which replace "P81 ongoing

https://www.w3.org/TR/rdf-schema/#def-subclass
https://www.w3.org/TR/rdf-schema/#def-subclass

throughout" and "P82 at some time within" of the CRM. For more details about the meaning
of these four properties, see the guidelines in the Annex below.
Extremely old paleontological material and astronomic dates can be below the range of
xsd:dateTime. If such dates need to be recorded, we recommend to discuss an extension
with CRM-SIG.
All other RDF datatypes for time with more limited precision, such as years only (xsd:gYear),
should not be used, because their interpretation either as duration or interval of
indeterminacy causes significant implementation overhead at query time, whereas the
properties P82a,P81a,P81b,P82b can express the same information unambiguously.
Notwithstanding, data entry forms may offer any simplification for specifying dates they want,
and convert internally the representation into the recommended form. Ease of data entry is
therefore no argument for the choice of a datatype.

Recording space
The recommended datatypes of RDF1.1 do not contain datatypes for describing geometric
entities on the surface of earth. On the other side, they become increasingly important, and
the CIDOC CRM version 6.2 on defines E94 Space Primitive, subclass of: E59 Primitive
Value, as:
“This class comprises instances of E59 Primitive Value for space that should be
implemented with appropriate validation, precision and references to spatial coordinate
systems to express geometries on or relative to earth, or any other stable constellations of
matter, relevant to cultural and scientific documentation.
An E94 Space Primitive defines an E53 Place in the sense of a declarative place as
elaborated in CRMgeo (Doerr and Hiebel 2013), which means that the identity of the place is
derived from its geometric definition. This declarative place allows for the application of all
place properties to relate phenomenal places to their approximations expressed with
geometries.
Definitions of instances of E53 Place using different spatial reference systems always result
in definitions of different instances of E53 place approximating each other. It is possible for a
place to be defined by phenomena causal to it, such as a settlement or a riverbed, or other
forms of identification rather than by an instance of E94 Space Primitive. Any geometric
approximation of such a place by an instance of E94 Space Primitive constitutes an instance
of E53 Place in its own right, i.e., the approximating one.
Instances of E94 Space Primitive provide the ability to link CRM encoded data to the kinds
of geometries used in maps or Geoinformation systems. They may be used for visualisation
of the instances of E53 Place they define, in their geographic context and for computing
topological relations between places based on these geometries.
E94 Space Primitive is not further elaborated upon within this model. Compatibility with OGC
standards are recommended.”
These standards currently do not have a common form comprising all others. Further,
geometries defined with respect to particular object shapes, such as rotationally symmetric
ones, are possibly open ended.

Therefore we define in the CRM RDFS the range of properties that use E94 Space Primitive
in the definition of the CRM as rdfs:Literal, and recommend the user to instantiate it with

adequate datatypes compatible with rdfs:Datatype. These are for the surface of Earth
“ogc:gmlLiteral” or “geo:wktLiteral”. In order to accommodate for very large literals, see
section “Very large Primitive Values” for additional definitions.

In the current version of the CIDOC CRM, only the property “P168 place is defined by
(defines place)” has range E94 Space Primitive[9].

Since any instance of E94 Space Primitive identifies unambiguously an instance of E53
Place by a symbolic expression, E94 Space Primitive must logically be regarded as a
subclass of E41 Appellation. Consequently, we define P168 place is defined by (defines
place) as subproperty of “P1 is identified by”, and all literals used as its range instances
implicitly as instances of E41 Appellation (see section “RDF implementation tests” item 1.).
See also section “Recording Names”.

Recording spacetime

Recording spacetime is very similar to recording space in all aspects: The recommended
datatypes of RDF1.1 do not contain datatypes for describing spacetime volumes. Developing
the CIDOC CRM and CRMgeo in particular, it appeared that all phenomena that can be
named and can serve for determining by their spatial extent a place do also more or less
change their spatial extent over time. If their maximal spatial extent is not sufficient for the
purpose of documentation, the only consistent way to approximate these “places” is to
approximate them by declarative spacetime volumes.
The CIDOC CRM version 6.2 on defines E94 Space Primitive, subclass of: E59 Primitive
Value, as:
“This class comprises instances of E59 Primitive Value for spacetime volumes that should be
implemented with appropriate validation, precision and reference systems to express
geometries being limited and varying over time on or relative to earth, or any other stable
constellations of matter, relevant to cultural and scientific documentation. A Spacetime
Primitive may consist of one expression including temporal and spatial information like in
GML or a different form of expressing spacetime in an integrated way like a formula
containing all 4 dimensions.
An E95 Spacetime Primitive defines an E92 Spacetime Volume in the sense of a declarative
spacetime volume as defined in CRMgeo (Doerr & Hiebel 2013), which means that the
identity of the spacetime volume is derived from its geometric and temporal definition. This
declarative spacetime volume allows for the application of all E92 Spacetime Volume
properties to relate phenomenal spacetime volumes of periods and physical things to
propositions about their spatial and temporal extents.
Definitions of spacetime volumes using different spacetime reference systems always result
in definitions of different spacetime volumes approximating each other. It is possible for a
spacetime volume to be defined by phenomena causal to it, such as an expanding and
declining realm, a settlement structure or a battle, or other forms of identification rather than
by an instance of E95 Spacetime Primitive. Any spatiotemporal approximation of such a

phenomenon by an instance of E95 Spacetime Primitive constitutes an instance of E92
Spacetime volume in its own right, i.e., the approximating one. E95 Spacetime Primitive is
not further elaborated upon within this model. Compatibility with OGC standards are
recommended.”

There are very few standardized formats for spacetime volumes. The most simple
representations are a sort of 3D/4-D right prisms[10](geometry), in which the 2D /3D-base is
a geometry kept constant over a time interval (the “height” of the prism). A more elaborate
method is proposed by (Niccolucci & Hermon 2015), which uses aggregates of rectangular
boxes for approximating irregular spacetime volumes.

Therefore we define in the CRM RDFS the range of properties that use E95 Spacetime
Primitive in the definition of the CRM as rdfs:Literal, and recommend the user to instantiate it
with adequate datatypes compatible with rdfs:Datatype. In order to accommodate for very
large literals, see section “Very large Primitive Values” for additional definitions.

In the current version of the CIDOC CRM, only the property “P169 defines spacetime volume
(spacetime volume is defined by)” has range E95 Spacetime Primitive.
Since any instance of E95 Spacetime Primitive identifies unambiguously an instance of E92
Spacetime volume by a symbolic expression, E95 Spacetime Primitive must logically be
regarded as a subclass of E41 Appellation. . Consequently, we define “P169 defines
spacetime volume (spacetime volume is defined by)” as subproperty of “P1 is identified by”,
and all literals used as its range instances implicitly as instances of E41 Appellation (see
section “RDF implementation tests” item 1.). See also section “Recording Names”.

Recording numbers
“Number” is a very general mathematical term. The CIDOC CRM version 6.2 on defines E60
Number, subclass of E59 Primitive Value, as:

“This class comprises any encoding of computable (algebraic) values such as integers, real
numbers, complex numbers, vectors, tensors etc., including intervals of these values to
express limited precision.

Numbers are fundamentally distinct from identifiers in continua, such as instances of E50
Date and E47 Spatial Coordinate, even though their encoding may be similar. Instances of
E60 Number can be combined with each other in algebraic operations to yield other
instances of E60 Number, e.g., 1+1=2. Identifiers in continua may be combined with
numbers expressing distances to yield new identifiers, e.g., 1924-01-31 + 2 days =
1924-02-02. Cf. E54 Dimension””

 In the CIDOC CRM, the class E60 Number appears only twice, as range of “E19 Physical
Object: P57 has number of parts”, and as range of “E54 Dimension: P90 has value: E60
Number”.

In CRM RDFS, the range of “P57 has number of parts” should be xsd:nonNegativeInteger.

Due to the genericity of E54 Dimension, the range of “P90 has value” cannot be identified
with a particular XSD datatype. The typical museum application of this class are the spatial
dimensions of an object. In that case, and for all other linear dimensions, it is recommended
to instantiate the range of “P90 has value” as xsd:double.

However, the class is relevant for describing the results of all kinds of measurements and
other quantitative observations, which may use very complex representations of quantities. It
is not in the scope of the CRM to develop exhaustive standards for these cases, because it
is much more in the expertise of the respective natural sciences to define them. Respective
communities of practice are invited to propose specializations of E54 Dimension and
“P90_has_value”. For instance, sensor arrays, more and more in use, pose the issue of a
single measurement resulting in an array of numbers which altogether form one quantitative
statement about the observed. We can describe such structures easily as one complex type
of unit (and define an IRI for it), and then regard the value to a matrix of numbers, in which
each position obeys subunits as defined in the complex unit type. In order to accommodate
for very large literals, see section “Very large Primitive Values” for additional definitions.

Whereas the CRM regards that intervals of primitive values are primitive values by
themselves, there is currently no corresponding practice in RDF. Therefore, in analogy to the
properties of E52 Time-Span, we define in CRM RDFS two more subproperties of P90 has
value: “P90a_has_lower_value_limit” and “P90b_has_upper_value_limit”. Even if we regard
complex matrices of numbers as one value for an instance of E54 Dimension, such as RGB
images, we can argue that minimal and maximal values exist as two separate matrices of the
same structure. The precise guidelines for using these properties are given in the section
“Guidelines for using P90a, P90, P90b” below.

Recording string values
The CIDOC CRM version 6.2 defines E62 String, subclass of E59 Primitive Value, as:

"This class comprises coherent sequences of binary-encoded symbols. They correspond to
the content of an instance of E90 Symbolic object. Instances of E62 String represent only
the symbol sequence itself. They may or may not contain a language code. In contrast,
instances of other subclasses of E59 Primitive value represent entities in mathematical
spaces different from that of symbol sequences, by using binary-encoded symbols, such as
date expressions or numbers in decimal encoding. For instance, different syntactic forms of
a date expression may represent the same date, but different strings."

E62 String appears in the CRM only as range of P3_has_note and its subproperties
P79_beginning_is_qualified_by and P80_end_is_qualified_by, and in particularly in the
newly proposed property “E90 Symbolic Object: has symbolic content”.

E62 String corresponds to rdfs:Literal, with the above described interpretation. Instantiation
with rdf:langString and xsd:string is compatible.

 Recording names

In the CRM names are modelled as instances of E41 Appellation. This class comprises any
symbolic object used or created to name something without requiring further meaning. The
CIDOC CRM version 6.2 defines E41 Appellation, subclass of E90 Symbolic Object, as:
“This class comprises signs, either meaningful or not, or arrangements of signs following a
specific syntax, that are used or can be used to refer to and identify a specific instance of
some class or category within a certain context.

Instances of E41 Appellation do not identify things by their meaning, even if they happen to
have one, but instead by convention, tradition, or agreement. Instances of E41 Appellation
are cultural constructs; as such, they have a context, a history, and a use in time and space
by some group of users. A given instance of E41 Appellation can have alternative forms, i.e.,
other instances of E41 Appellation that are always regarded as equivalent independent from
the thing it denotes. “

The CRM is an ontology in the proper sense. Therefore, instances of physical things and
phenomena of the physical worlds are regarded to be the things themselves, and not their
machine representation, and any identifier or name used for something from the material
world is different from the thing itself. For instance, I, Martin Doerr, am an instance of E21
Person, and not any of the URIs or records that may represent me in an information system.
I am unique in this world, as is any particular thing, in contrast to representations of me.
In the CRM, the property “P1 is identified by” from “E1 CRM Entity” to “E41 Appellation”
relates the things to their names or identifiers.

In any knowledge representation schema, any item that cannot “reside” in the machine itself
due to its nature, must be represented by one selected primary identifier, in the case of RDF
by a URI. For an information system to be consistent with the described reality, these
selected identifiers should map one-to-one to the ontological instances they stand for.
Therefore, any instance of a class represented by a URI in RDF plays a dual role: it stands
for the ontological instance and is an identifier for it (see also Meghini et al. 2014).
For practical reasons, we do not represent this duality by a recursive use of “P1 is identified
by” from an instance to itself in its second capacity as an identifier. However, all other names
and identifiers are related to the select primary identifier via “P1 is identified by”. This implies
that the choice about which of multiple identifiers is the primary one may be changed without
changing the meaning. In contrast, owl:same_as relates two primary URIs of things as
different representation of the same real world thing, aggregating the properties of both
representations as valid for the real world thing.

In practice, only the URIs, literals and datatypes “reside” themselves directly in a machine
and need no additional identification because they are completely identified by their content.
We may distinguish four different kinds of Appellations: URIs, identifiers from local
application contexts, literally defined names used in human written communication and
names from oral communication and tradition. Typically, URIs and local identifiers have a
unique representation as strings. However, the situation for names is more complex.
For instance, 北京 is a literally defined name for the capital of China. “Bei Jing” is meant to
be an representation of the same name in Latin characters (underspecified without accent
marks), and not meant to be another name for the same city. “Doerr is a respelling of Dörr, a

German surname[11]”. The most elaborate and effective good practice for registering proper
names comes from the library community (Doerr, Riva and Zumer 2012). The FRBR Review
Group of IFLA decided for practical reasons to identify a name (“Nomen” in their terminology)
by the identical sequence of characters in a given script, not by the binary encoding.

For historical research however, in particular capturing oral tradition, this definition is too
narrow, and we are confronted in relevant CRM applications with cases of names with
spelling variants and even spoken variants. All cases of names that cannot uniquely be
identified with a character sequence must be represented with a URI and further properties
of description must be added, by preference the new property “E90 Symbolic Object: P190
has symbolic content”. Also, if someone wants to document facts about a name other than
its spelling, a URI must first be assigned, because a character string itself cannot be referred
to in RDF. This case must not be confused with documenting facts about the relation
between a name and a particular carrier of that name, because that would be a reification of
this relation, and not talking about the name.

Summarizing, there are two cases:
a) A name or identifier is completely defined and identified by a character sequence or
any digitally, unambiguously encoded symbol.
b) A name or identifier is identified but not defined by a URI.
As a matter of fact, RDFS provides the property rdfs:label, which implements exactly the
case a) above, without the possibility to add descriptions of the name itself. SKOS
specializes rdfs:label into properties such as skos:prefLabel and skos:altLabel, which define
indeed the names by which things are called by people. We take therefore the use of
rdfs:label as existing good practice.

Consequently, we have to regard rdfs:label as a special case of “P1 is identified by”, and all
literals used as range instances of rdfs:label implicitly as instances of E41 Appellation (see
section “RDF implementation tests” item 1.).
Unfortunately, our KR languages have not foreseen the case that an instance of a datatype
is also an instance of a user-defined class. This causes a range conflict, which can be
overcome by “punning” the range of “P1 is identified by” to be both rdfs:Literal and E41
Appellation (see section “RDF implementation tests” item 2.).

This recommended implementation allows for using both models for Appellations, via an
additional URI or directly as literal, and returning with one query all range instances of “P1 is
identified by” following this interpretation. The SPARQL query result separates URIs from
literals automatically. So, there is no ambiguity about the nature of the result.
Only if the same name is described both directly via rdfs:label and indirectly via a URI, the
matching of both would need another query.
So, the frequently asked question remains, why not avoiding this double definition and
describe any instance of E41 Appellation via another URI? The answer is that actually the
cases that require explicit representation of E41 Appellation are relevant but rare. On the
other side, good practice requires all nodes in a semantic graph represented by a URI to
carry a human-readable label in addition. This means that the storage volume and query
performance would heavily be hampered by such a “pure-logic-driven” decision.

The only ambiguity that remains is the case in which the instance of Appellation is literally
the URI itself, and not a URI representing an Appellation of different form. There are two
solution to this problem: Either classify this URI by the class of things it identifies and use
owl:same_as, or we define a specific subclass of E41 Appellation “URI”.

Language of an Appellation
Whereas common words always belong to a language, proper names normally do not
belong to a language. For persons, they are normally used in the form the carrier of the
name uses it, and for place names in the form the local population uses it. The latter place
names are called “vernacular”. Only important and historical places use to have name
variants in use in other language groups. The same holds for some meaningful titles of
paintings, and translations of books, movies etc. Even specialized terms, even though not
being proper names, often are not translated. The “language” of such names is more a
useful distinction for the user to recognize and distinguish the target group of a label.
We therefore recommend the use of rdfs:langString for all Appellations being regarded
specific to or characteristic for a language group and being directly described by a literal and
not indirectly via a URI. For Appellations being described indirectly via a URI, we
recommend the use of E41 Appellation > P72 has language > E56 Language. This holds
also in the case the language to be documented is not among those that can be specified by
rdfs:langString. For convenience, the next version of the CRM RDFS will contain the class
“E41_E33_Linguistic Appellation”, sublass of E41 Appellation and E33 Linguistic Object.

Very large Primitive Values
In general, representations of primitive values do not have a size limit, except for time
expressions. In particular, geometries may be very large polygon sequences or other large
datasets, as well as arrays of numbers from scientific data.

Very large strings one would normally describe in a file and instantiate E90 Symbolic Object
or a subclass of it with the URL. However, the question is, if the URL would indeed be a
good persistent identifier, since the URL stands for a physical location, albeit indirectly
addressed. The Linked Open Data community has not yet given satisfactory answers for the
long term validity of resolvable URIs. If the URL is not a good identifier, another, primary URI
should be chosen, and the content found under this URL should be related to the primary
URI as a representative of the content of the symbolic object identified with the primary URI.
We recommend for this relation a specific property to be decided by the CRM Special
Interest Group, either specific to CRM RDF, or in CRMbase.

In the case of the other Primitive Values, except for time, we recommend a “punning”
solution: The properties that have as range a Primitive Value in the CRM should be defined
in CRM RDF to have as range rdfs:Literal and the respective subclass of E59 Primitive
Value:
· P90 has value: has range both rdfs:Literal and has range E60 Number”.

· P168 place is defined by (defines place)” has range both rdfs:Literal and has range E94
Space Primitive
· P169 defines spacetime volume (spacetime volume is defined by) has range both
rdfs:Literal and has range E95 Spacetime Primitive

The respective subclass should only be instantiated with a URL of a file containing the
content in the case the content does not fit well in an rdfs:Literal. See examples in the
section “RDF implementation tests” item 4.

Defining custom datatypes
New datatypes can be defined, published in a respective namespace and added to the
RDFS datatypes, for instance using a cidoc crm namespace. The section “RDF
implementation tests” item 3 shows how a cidoc crm space primitive can be defined as
datatype.

Any string of a datatype is stored in a triple store as a literal. If the datatype is a compound
value, such as xsd:dateTime, there are specific functions that are in reality String Functions
which can isolate the different parts, for instance that of a date (year, month etc), at query
time, and makes them accessible to be specified as query elements. See “RDF
implementation tests” item 5.

The alternative, to define for each kind of compound value a series of subproperties of
P_has_value, makes data entry, data display and computation with these values much more
complex. We do not recommend this solution.

This means that it is up to the designer of these functions to define a convenient syntax
within the respective literal, and of course a question of standardization. The respective
String Functions are either compiled into the query software, or invoked by code that runs on
query results. The latter is much easier to handle by users, if they have no IT support to
embed the code in the query system. For our purposes, most custom datatypes need not be
broken up into its parts by the query system itself, because they will be interpreted anyway
after querying, often just by the user reading them.

We recommended users to find respective custom datatypes and their syntax at the
communities of practice dealing most with these kinds of values and to propose them to the
CIDOC CRM Special Interest Group for approval.

Properties of properties
As mentioned above, RDF does not support properties of properties. Therefore, users are
recommended two ways to work around:
A. The current properties of properties in the CRM have all as range “E55 Type”.
Therefore they correspond to subtyping of the respective property by a local vocabulary.

B. For the cases in which the local vocabulary is not fixed, there is a recommended
form of reification via an auxiliary “property class”. This replaces the former recommendation
to use E13 Attribute assignment in order to introduce user defined property types.
The two solutions have pros and cons with respect to query performance, user interface
programming and flexibility to cater for a local, evolving terminology.
Solution A:
Users that have fixed vocabularies of property types for those properties foreseeing in the
CRM a “type” or “Pxx.1” property, may transform these types into their own subproperties
for the respective CRM properties, such a as "P3 has note":
 Instead of P3 has note (P3.1 has type : parts description) declare
 <rdf:Property rdf:about="P3_parts_description">
 <rdfs:domain rdf:resource="E1_CRM_Entity"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
 <rdfs:subPropertyOf rdf:resource="P3_has_note"/>
 </rdf:Property>
This ensures that a graph using these subproperties can consistently be retrieved via their
superproperties. In other terms, a system using this solution a) is query compatible with the
CIDOC CRM without using properties of properties in the query and b) it ensures that typing
a property instantiates the base property and therefore the complete graph is contained in
the respective query answer. It is the most efficient implementation, both in terms of query
performance and storage overhead. User interface programmers should query these
additional subproperties and create at run-time selection lists of them, rather than
hard-coding the vocabularies. If such extensions are widely built, they can reveal an
emerging good practice and become subject to a standardization of its own. The drawback
is that the vocabulary must be loaded to database platform before-hand, and this
mechanism only applies to types of properties. It is the preferred solution.

In case users have no other choice than to deal with open vocabularies of property types, or
would need extensions with properties of properties other than types, they should resort to
solution B. This solution uses “property classes”, i.e., representing an n-ary property by an
auxiliary RDF class, which are provided together with the CRM RDF Schema[12]. This
solution is logically adequate and further extensible, but is more complex with respect to
query formulation, has considerably slower query response times in current knowledge base
platforms than the above and more storage overhead. It is more obvious for user interface
programmers to create the respective selection lists, and users may introduce new types at
runtime.

About implementing multiple Instantiation
Knowledge Representation models can assign multiple classes to a given instance identifier.
After that, all properties of each assigned class are applicable for this identifier. This
construct is called “multiple instantiation. For instance, a calligraphy is an “image” and a
“linguistic object”, having a language and a painting style. This is not possible with Relational
data structures, because instance identification is limited to the entity (class) or with XML-like
data structures, because instance identification is by structural position (additional identifiers
can be used for linking).

Therefore many users are not aware of this feature, and even KR tools do not systematically
guide users to use it: Once an instance is classified by one class, the tool should not allow
for using a property of another class, but most likely will not advise the user that she could
add the additional class to the instance. Nevertheless, it is a key feature of KR models that
facilitating modularizing ontologies and the often advertised ability to combine different
ontologies.
The CRM as ontology relies heavily on multiple instantiation: Combination of classes that are
applicable to some instances only incidentally and have no properties specific to this
combination are not modelled in the CRM individually as subclasses of multiple parent
classes. The latter would be called “multiple IsA”. To avoid multiple IsA in such cases is an
important normalization principle to keep the ontology very compact and unambiguous.
In the specification modules of mapping software used to transform data into a
CRM-compatible form, care must be taken to foresee and allow the user to combine RDF
classes systematically.
Some combinations of classes may more frequently occur, such as combining E41
Appellation with E33 Linguistic Object in order to reach E56 Language via P72 has
language. In a local system that does not easily support multiple instantiation, the candidate
cases for multiple instantiation may be combined in subclasses using multiple IsA. For their
labels, we recommend to aggregate the class identifier codes as in: “E41_E33_Linguistic
Appellation”. Such a replacement is query compatible with the standard. A respective
import/export system simply needs to make the trivial replacements of the respective class
combinations with their multiple IsA counterparts and vice-versa in order to achieve
import/export compatibility.
Users may provide feedback about frequent cases where multiple instantiation is used, in
order to guide users to these modelling cases. These could systematically be entered into
the CRM RDF implementation, without requiring the CRM standard itself to repeat them.

CIDOC CRM and other frameworks
The CIDOC CRM generally foresees to be used together with other ontologies and
respective implementations for all domains that fall outside the scope of the CRM and for
which an active, internationally acknowledge community exist that maintains the respective
ontology. It is not the intention of the CIDOC CRM to compete with communities that have
superior domain knowledge, but rather to benefit from their insight, given the ontology has
been created with a compatible methodology or diligence. The CRM may deliberately reduce
its scope in favour of such a community.

This theoretical principle finds in practice the following obstacles: The respective domain
ontology will most likely define general concepts that overlap in an incompatible way with the
CRM. For instance, OGC defines a few fundamental concepts differently analysed in the
CRM, and many concepts the CRM never intends to deal with, but wants to recommend
their use (see Doerr, Hiebel and Eide 2013).

This problem can be solved by a so-called “articulation”. Overlapping concepts are
redefined and new concepts are introduced to create a more detailed model of the

overlapping area which can be mapped to both ontologies. Users must replace the
incompatible parts of both ontologies with the refined model, and use all other concepts of
both ontologies together with it. The CIDOC CRM SIG aims at adapting the CRM to
important domain ontologies by adopting the refined model.

Such a model is CRMgeo, linking the CIDOC CRM with OGC standards (Doerr, Hiebel and
Eide 2013, Doerr and Hiebel 2013). I.e., OGC standards can be used, except for those
concepts redefined in CRMgeo, together with CRMgeo and CRM “base”.
The bibliographic “FRBR Family of models” by IFLA on the other side was formulated as
Entity-Relationship model, a methodology incompatible with the CRM. Therefore, both
communities, CIDOC and IFLA, have engaged in a compatible, complete reformulation of
the FRBR models, now “Library Reference Model (LRM)” as the CRM-compatible ontology
FRBRoo version 1-3, version 3 now renamed to “LRMoo”.

SKOS[13] is an RDF schema originally designed to describe terminologies of universals of
entities. E55 Type may in general refer to even less formal systems of terminology than
SKOS and it is also used in the CRM to refer to property types. Therefore, it is
recommended to define E55 Type as superclass of skos:Concept and
P127_has_broader_term as superproperty of skos:broader / P127i_has_narrower_term as
superproperty of skos:narrower. It is not recommended and incompatible with the CRM to
use skos:Concept for places and persons. See also LRMoo about the distinction between
natural persons and literary characters derived from those.

The Dublin Core Metadata Element Set, Version 1.1, has limited compatibility. The
properties, dc:relation and dc:date are underspecified, and their use leads to ambiguous
overlaps with CRM-based descriptions. The properties dc:publisher, dc:creator,
dc:contributor, dc:source may be interpreted as shortcuts of CRM properties, but lack the
important intermediate events. It is not recommended to combine DC with the CRM.
Alternative, separate descriptions of things with The Dublin Core Metadata Element Set are,
of course, no problem.

 The compatibility of other frameworks with the CRM needs to be investigated. The CRM
SIG will be glad to receive request and collaborate with respective initiatives.

References
Doerr, Martin & Riva, Pat & Žumer, Maja. (2012). FRBR Entities: Identity and Identification.
In: Cataloging & Classification Quarterly. Volume 50, 2012 - Issue 5-7: The FRBR Family of
Models. Pages 517-541 DOI: 10.1080/01639374.2012.681252.
Hiebel, G.H, Doerr, M., & Eide, Ø. (2013). Integration of CIDOC CRM with OGC Standards
to model spatial information (Session5, 522). Computer Applications and Quantitative
Methods in Archaeology (CAA) 2013, Perth-Australia, 25th -28th March 2013. (pdf).

http://caa2013.org/drupal/sessions
http://caa2013.org/drupal/sessions
http://caa2013.org/drupal/sessions
https://www.ics.forth.gr/_publications/CAA2013_Hiebel_Doerr_Eide_CIDOC_CRM_OGC.pdf

Doerr, M., & Hiebel, G.H (2013). CRMgeo: Linking the CIDOC CRM to GeoSPARQL through
a Spatiotemporal Refinement. 2013.TR435_CRMgeo_CIDOC_CRM_GeoSPARQL.pdf
Franco Niccolucci, Sorin Hermon (2015) “Representing gazetteers and period thesauri in
four-dimensional space–time”, Published 2015 in International Journal on Digital Libraries,
DOI:10.1007/s00799-015-0159-x
Meghini, C., Spyratos, N., Sugibuchi, T. and Jitao Yang. (2014). A Model for Digital Libraries
and its Translation to RDF. In: Journal on Data Semantics, June 2014, Volume 3, Issue 2, pp
107–139. https://doi.org/10.1007/s13740-013-0029-x
Meghini, C. and Doerr, M., 2018, ‘A first-order logic expression of the CIDOC Conceptual
Reference Model', International Journal of Metadata, Semantics and Ontologies.

Annex

Commented overview of RDFS datatypes

 Datatype Value space (informative) CRM

recommend
ation

Comment

Core
types

xsd:string Character strings (but not all Unicode
character strings)

IsA E62
String and
default.

E62 may
contain
more kinds
of
symbols/scr
ipts, such as
xsd:hexBin
ary or
Linear B

xsd:boolean true, false IsA I6 Belief
Value. Do
not use.

Only belief
values in
CRMInf
may use
these
values, but
they should
at least be
three-value
d: True,
False,
Unknown.

xsd:decimal Arbitrary-precision decimal numbers Do not use
xsd:integer Arbitrary-size integer numbers IsA E60

Number

https://www.ics.forth.gr/tech-reports/2013/2013.TR435_CRMgeo_CIDOC_CRM_GeoSPARQL.pdf
https://www.ics.forth.gr/tech-reports/2013/2013.TR435_CRMgeo_CIDOC_CRM_GeoSPARQL.pdf
https://www.semanticscholar.org/author/Franco-Niccolucci/2074362
https://www.semanticscholar.org/author/Sorin-Hermon/2361090
http://doi.org/10.1007/s00799-015-0159-x
http://www.w3.org/TR/xmlschema11-2/#string
http://www.w3.org/TR/xmlschema11-2/#boolean
http://www.w3.org/TR/xmlschema11-2/#decimal
http://www.w3.org/TR/xmlschema11-2/#integer

IEEE
floating-p

oint
numbers

xsd:double 64-bit floating point numbers incl. ±Inf,
±0, NaN

IsA E60
Number

xsd:float 32-bit floating point numbers incl. ±Inf,
±0, NaN

IsA E60
Number

Time and
date

xsd:date Dates (yyyy-mm-dd) with or without
timezone

IsA E61
Time
Primitive, do
not use

It could be
used for
P81,P82,
but only for
intervals of
days. That
does not
seem to
make much
sense. It
must not be
used for
P81a,P81b,
P82a, P82b

xsd:time Times (hh:mm:ss.sss…) with or without
timezone

Do not use

xsd:dateTime Date and time with or without timezone Use pairwise
for E61 Time
Primitive

Use for
P81a,P81b,
P82a, P82b.

xsd:dateTimeStamp Date and time with required timezone Use pairwise
for E61 Time
Primitive

Use for
P81a,P81b,
P82a, P82b.

Recurring
and

partial
dates

xsd:gYear Gregorian calendar year Do not use
xsd:gMonth Gregorian calendar month Do not use
xsd:gDay Gregorian calendar day of the month Do not use
xsd:gYearMonth Gregorian calendar year and month Do not use
xsd:gMonthDay Gregorian calendar month and day Do not use
xsd:duration Duration of time IsA E54

Dimension,

use for P83
had at least
duration
(was
minimum
duration
of): E54
Dimension
P84 had at
most
duration
(was
maximum
duration
of): E54
Dimension

xsd:yearMonthDura

tion

Duration of time (months and years
only)

See above

http://www.w3.org/TR/xmlschema11-2/#double
http://www.w3.org/TR/xmlschema11-2/#float
http://www.w3.org/TR/xmlschema11-2/#date
http://www.w3.org/TR/xmlschema11-2/#time
http://www.w3.org/TR/xmlschema11-2/#dateTime
http://www.w3.org/TR/xmlschema11-2/#dateTimeStamp
http://www.w3.org/TR/xmlschema11-2/#gYear
http://www.w3.org/TR/xmlschema11-2/#gMonth
http://www.w3.org/TR/xmlschema11-2/#gDay
http://www.w3.org/TR/xmlschema11-2/#gYearMonth
http://www.w3.org/TR/xmlschema11-2/#gMonthDay
http://www.w3.org/TR/xmlschema11-2/#duration
http://www.w3.org/TR/xmlschema11-2/#yearMonthDuration
http://www.w3.org/TR/xmlschema11-2/#yearMonthDuration

xsd:dayTimeDurati

on

Duration of time (days, hours, minutes,
seconds only)

See above

Limited-r
ange

integer
numbers

xsd:byte -128…+127 (8 bit) Do not use
xsd:short -32768…+32767 (16 bit) Do not use
xsd:int -2147483648…+2147483647 (32 bit) Do not use
xsd:long -9223372036854775808…+9223372036

854775807 (64 bit)
Do not use

xsd:unsignedByte 0…255 (8 bit) Do not use
xsd:unsignedShort 0…65535 (16 bit) Do not use
xsd:unsignedInt 0…4294967295 (32 bit) Do not use
xsd:unsignedLong 0…18446744073709551615 (64 bit) Do not use
xsd:positiveInteg

er

Integer numbers >0 May be used
in extensions.

xsd:nonNegativeIn

teger

Integer numbers ≥0 IsA E60
Number.

Use for P57
has number
of parts. It
may be
useful to
distinguish
zero parts
from not
knowing
parts.

xsd:negativeInteg

er

Integer numbers <0 Do not use

xsd:nonPositiveIn

teger

Integer numbers ≤0 Do not use

Encoded
binary
data

xsd:hexBinary Hex-encoded binary data IsA E62
String.

Note, that it
represents
bits and not
the hex
symbols.
Can be
useful for
content
models.

xsd:base64Binary Base64-encoded binary data Do not use
Miscellane

ous
XSD types

xsd:anyURI Absolute or relative URIs and IRIs
xsd:language Language tags per [BCP47] IsA E56

Language
Since there
are many
more
historical
languages
than
xsd:languag
e comprise,
we may
better use it

http://www.w3.org/TR/xmlschema11-2/#dayTimeDuration
http://www.w3.org/TR/xmlschema11-2/#dayTimeDuration
http://www.w3.org/TR/xmlschema11-2/#byte
http://www.w3.org/TR/xmlschema11-2/#short
http://www.w3.org/TR/xmlschema11-2/#int
http://www.w3.org/TR/xmlschema11-2/#long
http://www.w3.org/TR/xmlschema11-2/#unsignedByte
http://www.w3.org/TR/xmlschema11-2/#unsignedShort
http://www.w3.org/TR/xmlschema11-2/#unsignedInt
http://www.w3.org/TR/xmlschema11-2/#unsignedLong
http://www.w3.org/TR/xmlschema11-2/#positiveInteger
http://www.w3.org/TR/xmlschema11-2/#positiveInteger
http://www.w3.org/TR/xmlschema11-2/#nonNegativeInteger
http://www.w3.org/TR/xmlschema11-2/#nonNegativeInteger
http://www.w3.org/TR/xmlschema11-2/#negativeInteger
http://www.w3.org/TR/xmlschema11-2/#negativeInteger
http://www.w3.org/TR/xmlschema11-2/#nonPositiveInteger
http://www.w3.org/TR/xmlschema11-2/#nonPositiveInteger
http://www.w3.org/TR/xmlschema11-2/#hexBinary
http://www.w3.org/TR/xmlschema11-2/#base64Binary
http://www.w3.org/TR/xmlschema11-2/#anyURI
http://www.w3.org/TR/xmlschema11-2/#language

as rdf:label
or identifier
for those
covered by
xsd:languag
e.

xsd:normalizedStr

ing

Whitespace-normalized strings IsA E62
String

xsd:token Tokenized strings IsA E62
String

xsd:NMTOKEN XML NMTOKENs Do not use
xsd:Name XML Names Do not use
xsd:NCName XML NCNames Do not use

Guidelines for using P82a, P82b, P81a,
P82b
Jan 7, 2018
The range of the properties "P81 ongoing throughout" and "P82 at some time within" are
defined in the CRM as E61 Time Primitive. Instance of E61 Time Primitive are defined as
closed, contiguous intervals on the natural time dimension in which we live. “Closed” means
that the endpoints belong to the interval. “Contiguous” means that there are no gaps
between the endpoints in the interval (which holds for “intervals” in general).
The reason to describe time spans with inner and outer intervals is the existence of a very
efficient algebra for calculating resulting areas of determinacy and indeterminacy
[Plexousakis et al.XXXX]. Further, they are motivated by the British MIDAS Heritage
standards [https://en.wikipedia.org/wiki/MIDAS_Heritage] and easy to define in Relational
databases.
Since the E61 Time Primitive of the CRM cannot be expressed in RDF directly, in the official
RDF implementation of the CIDOC CRM, we define four properties replacing P81 and P82
adequately using xsd:dateTime.

P81 ongoing throughout
Property P81 describes the maximum known temporal extent of an E52 Time-Span, i.e. the
extent it is ongoing throughout. It is replaced in this RDF version by the property
"P81a_end_of_the_begin" and "P81b_begin_of_the_end", to be used together.
"P81a_end_of_the_begin" should be instantiated as the earliest point in time the user is sure
that the respective temporal phenomenon is indeed ongoing. We call it “end_of_the_begin”,
because it also constitutes an upper limit to the end of the indeterminacy or fuzziness of the
beginning of the described temporal phenomenon.
"P81b_begin_of_the_end" should be instantiated as the latest point in time the user is sure
that the respective temporal phenomenon is indeed ongoing. We call it “begin_of_the_end”,

http://www.w3.org/TR/xmlschema11-2/#normalizedString
http://www.w3.org/TR/xmlschema11-2/#normalizedString
http://www.w3.org/TR/xmlschema11-2/#token
http://www.w3.org/TR/xmlschema11-2/#NMTOKEN
http://www.w3.org/TR/xmlschema11-2/#Name
http://www.w3.org/TR/xmlschema11-2/#NCName
https://en.wikipedia.org/wiki/MIDAS_Heritage

because it also constitutes a lower limit to the begin of the indeterminacy or fuzziness of the
end of the described temporal phenomenon.
It is correct to assign the same value to “P81a_end_of_the_begin” and
“P81b_begin_of_the_end”, if no other positive knowledge exists. It is also correct not to
instantiate P81 for a time span, if there is no evidence that the temporal phenomenon was
definitely occurring at a particular time.
If a respective reasoning is installed, and no evidence exists about the point in time that the
phenomenon was definitely ongoing, one may specify “P81a_end_of_the_begin” as being
later than “P81b_begin_of_the_end”, indicating that the indeterminacy of knowledge (not of
being) of the begin overlaps with the indeterminacy of knowledge (not of being) of the end
[see Christian-Emil Ore XXX].
If a value for “P81a_end_of_the_begin” is given with a precision less than that of
xsd:dateTime (i.e. seconds), such as in days or years, the implementation should “round it
up” to the last instant of this time expression, e.g. 1971 = Dec 31 1971 23:59:59.
Respectively, for “P81b_begin_of_the_end” the implementation should “round it down”, e.g.
1971 = Jan 1 1971 0:00:00. If values are needed that are not within the range or precision of
xsd:dateTime, e.g., for paleontology, this property should be extended with another, suitable
data type.

P82 at some time within
Property P82 describes the narrowest known outer bounds of the temporal extent of an E52
Time-Span, i.e. that the described temporal phenomenon is ongoing “at some time within”
this interval. It is replaced in the official RDF version by the properties
"P82a_begin_of_the_begin" and "P82b_end_of_the_end", to be used together.
"P82a_begin_of_the_begin" should be instantiated as the latest point in time the user is sure
that the respective temporal phenomenon is indeed not yet happening. We call it
“begin_of_the_begin”, because it also constitutes a lower limit to the beginning of the
indeterminacy or fuzziness of the begin of the described temporal phenomenon.
"P82b_end_of_the_end" should be instantiated as the earliest point in time the user is sure
that the respective temporal phenomenon is indeed no longer ongoing. We call it
“end_of_the_end”, because it also constitutes an upper limit to the end of the indeterminacy
or fuzziness of the end of the described temporal phenomenon.
It is not correct to assign the same value to “P82a_begin_of_the_begin” and
“P82b_end_of_the_end”. If a value for “P82a_begin_of_the_begin” is given with a precision
less than that of xsd:dateTime (i.e. seconds), such as in days or years, the implementation
should “round it down” to the first instant of this time expression, e.g. 1971 = Jan 1 1971
0:00:00. Respectively, for “P82b_end_of_the_end” the implementation should “round it up”,
e.g. 1971 = Dec 31 1971 23:59:59.
It must always hold that “P82a_begin_of_the_begin” is before “P82b_end_of_the_end”,
“P81a_end_of_the_begin” and “P81b_begin_of_the_end”.
It must always hold that “P82b_end_of_the_end” is after “P82b_end_of_the_end”,
“P81a_end_of_the_begin” and “P81b_begin_of_the_end”.
“P82a_begin_of_the_begin” and “P82b_end_of_the_end” should always be assigned a
value for any past phenomenon. The scholarly practice of not giving outer bounds for an
event, because they are not known down to a desired precision (e.g. of three years), is not

helpful for automated reasoning. In that case, the machine may conclude that a historical
event could have happened at the time of the dinosaurs. Therefore any value is better than
no value, even if it is relatively far away from the most likely value. It is an error to associate
any implicit degree of approximation with these values. Only for phenomena that may not
yet have ended at the time of documentation the end of the time-span should not be
specified.

Guidelines for using P90a, P90, P90b
The CRM recommends to approximate numerical values of Dimensions with intervals. The
range of the respective property "P90 has value" is defined in the CRM as E60 Number.
Whereas the CRM regards that intervals of primitive values are primitive values by
themselves, there is currently no corresponding practice in RDF. Therefore, in analogy to the
properties of E52 Time-Span, we define in CRM RDFS two more subproperties of P90 has
value: “P90a_has_lower_value_limit” and “P90b_has_upper_value_limit”.

The reasons for recommending this approximation are the following: All scientific
measurements of non-discrete values are imprecise because of the tolerances of the
measurement devices, shortcomings in applying the procedures and the indeterminacy of
the measured effect itself. In natural sciences, important results of measurements are
associated with possibly complex probabilistic distributions for the true value of the
measured effect.

The most complex case relevant for cultural-historical data are the so-called “battleship
curves” for calibrated C14 dating data. Many of these distribution models actually extend to
infinity with non-zero probability, which is neither practical nor always justified. In the case of
C14 however, the actual width of the distribution is often underestimated. Nevertheless,
even data with a given probabilistic uncertainty to infinity are typically associated by
scientists with narrower “confidence intervals” at one to three “standard deviations”, i.e., with
a probability of some 68% – 99.7% for the value to be in the given range
(https://en.wikipedia.org/wiki/Standard_deviation).

Whereas querying globally a very large aggregation of cultural-historical data by time
intervals is highly relevant, querying and reasoning with different approximations of
dimensions is normally restricted to quite narrow questions. For many cases, a medium
value without explicit limits is sufficient for the application, such as the length of a museum
object in millimeters for packaging it in a box. Nevertheless, querying explicit representation
of actual outer limits or at least reasonably wide confidence intervals is computationally
highly effective, and therefore a good way to ensure recall at query time, i.e., that the
relevant results are contained in the answer to the query, even if it also contains irrelevant
ones.

We therefore recommend to use P90_has_value for documenting a medium value or a value
without error estimates, when the precision appears to be self-evident or irrelevant.

We recommend to use P90a_has_lower_value_limit for documenting the highest explicit
lower limit available for the respective value, even if it provides very wide margins. It is an
error to omit the lower limit even if it appears to be overly pessimistic.

We recommend to use P90b_has_upper_value_limit for documenting the lowest explicit
upper limit available for the respective, even if it provides very wide margins. It is an error to
omit the upper limit even if it appears to be overly pessimistic.

In case of approximating probabilistic distributions, we recommend to keep lower and upper
limit at two standard deviations or enclosing the true value with 95% probability.

P90a_has_lower_value_limit should always be used together with
P90b_has_upper_value_limit. If they are used, the property P90_has_value may be used as
well or be omitted.

RDF implementation tests
1. rdfs:label as subproperty of P1 is identifiedby:
<rdf:Property rdf:about=="http://www.w3.org/2000/01/rdf-schema#label">

<rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 <rdfs:range rdf:resource=" http://www.w3.org/2000/01/rdf-schema#Literal "/>
 <rdfs:subPropertyOf rdf:resource="P1_is_identified_by"/>
</rdf:Property>
Query (Give me all the superproperties of rdfs:label) :
select * where {
rdfs:label rdfs:subPropertyOf ?p
}
Result from Virtuoso:
p:
http://www.cidoc-crm.org/cidoc-crm/P1_is_identified_by
2. Adding rdf:Literal as range of P1 is identified by:
The cidoc_crm.rdfs was altered to include the following:
<rdf:Property rdf:about="P1_is_identified_by">
 <rdfs:label xml:lang="en">is identified by</rdfs:label>
 <rdfs:domain rdf:resource="E1_CRM_Entity"/>
 <rdfs:range rdf:resource="E41_Appellation"/>
</rdf:Property>
<rdf:Property rdf:about="P1_is_identified_by">
<rdfs:label xml:lang="en">is identified by</rdfs:label>
 <rdfs:domain rdf:resource="E1_CRM_Entity"/>
<rdfs:rangerdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
</rdf:Property>

The cidoc crm schema was uploaded in virtuoso and the following query (give me the range
of P1_is_identified_property) was executed to be sure that the changes have been applied:

prefix crm: <http://www.cidoc-crm.org/cidoc-crm/>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select * where { crm:P1_is_identified_by rdfs:range ?range}

result:

range
http://www.cidoc-crm.org/cidoc-crm/E41_
Appellation
http://www.w3.org/2000/01/rdf-schema#L
iteral

So, it is confirmed that the two ranges have been added. We repeat at this point that
Virtuoso does not apply any semantic validation. The purpose of this test is to prove that
this exercise is possible even though conceptually it may not be correct.

Data example:
1. The ttl data that was presented previously has been added in virtuoso:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix crm: <http://www.cidoc-crm.org/cidoc-crm/> .

<http://example.com/person/alexander_the_great>
crm:P1_is_identified_by <http://example.com/appellation/alexander_the_great> .

<http://example.com/appellation/alexander_the_great>
rdfs:label "Alexander the Great" .

<http://example.com/person/alexander_the_great>
 rdfs:label "Alexander the Great" .

<http://example.com/person/alexander_the_great>
crm:P1_is_identified_by "Alexander the Great" .

2. A query to return all the “identifiers” of alexander the great using the is identified
property was applied:
prefix crm: <http://www.cidoc-crm.org/cidoc-crm/>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select * where
{ <http://example.com/person/alexander_the_great> crm:P1_is_identified_by ?identifier }
result:

identifier
http://example.com/appellation/alexander_t
he_great
Alexander the Great

http://example.com/person/alexander_the_great

3. Defining a CIDOC CRM custom datatype:
We need a cidoc crm namespace. An initial suggestion would be the following:
Prefix: cdt: http://www.cidoc-crm.org/cidoc-crm/datatypes/

Namespace for space primitive : cdt:space_primitive

What needs to be defined in cidoc crm rdfs to create the new cidoc crm datatypes?
The class rdfs:Literal is the class of literal values such as strings and integers. Property values such as
textual strings are examples of RDF literals. rdfs:Literal is an instance of rdfs:Class. rdfs:Literal is
subclass of rdfs:Resource. rdfs:Datatype is the class of datatypes.
All instances of rdfs:Datatype correspond to the RDF model of a datatype rdfs:Datatype is both an
instance of and a subclass of rdfs:Class. Each instance of rdfs:Datatype is a subclass of rdfs:Literal.
So, the cidoc crm datatypes must be instances of rdfs:Datatype that needs to be a subclass of
rdfs:Literal that is a subclass of rdfs:Class and each instance of rdfs:Datatype must be a subclass of
rdfs:Literal.
The addition to cidoc crm rdfs is the following (using the example of space primitive):
<rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Literal">

 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/>

 <rdfs:label>Literal</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>

</rdfs:Class>

<rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Datatype">

 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/>

 <rdfs:label>Datatype</rdfs:label>

 <rdfs:comment>The class of RDF datatypes.</rdfs:comment>

 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdfs:Class>

<rdfs:Class rdf:about="http://www.cidoc-crm.org/cidoc-crm/datatypes/space_primitive">

 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/>

 <rdfs:label>Datatype</rdfs:label>

 <rdfs:comment>The class of RDF datatypes.</rdfs:comment>

 <rdfs:subClassOf rdf:resource=" http://www.w3.org/2000/01/rdf-schema#Literal "/>

</rdfs:Class>

And afterwards there needs to be the information in the triple store (or in RDF data in general) that the

cidoc – crm datatype is an instance of rdfs:datatype.

http://www.cidoc-crm.org/cidoc-crm/datatypes/
http://www.cidoc-crm.org/cidoc-crm/datatypes/
http://www.w3.org/TR/rdf11-concepts/#section-Graph-Literal
http://www.w3.org/TR/rdf11-concepts/#section-Graph-Literal
https://www.w3.org/TR/rdf-schema/#ch_class
https://www.w3.org/TR/rdf-schema/#ch_class
https://www.w3.org/TR/rdf-schema/#def-subclass
https://www.w3.org/TR/rdf-schema/#def-subclass
https://www.w3.org/TR/rdf-schema/#ch_resource
https://www.w3.org/TR/rdf-schema/#ch_resource
http://www.w3.org/TR/rdf11-concepts/#section-Datatypes
http://www.w3.org/TR/rdf11-concepts/#section-Datatypes
https://www.w3.org/TR/rdf-schema/#def-subclass
https://www.w3.org/TR/rdf-schema/#def-subclass
https://www.w3.org/TR/rdf-schema/#ch_class
https://www.w3.org/TR/rdf-schema/#ch_class
https://www.w3.org/TR/rdf-schema/#def-subclass
https://www.w3.org/TR/rdf-schema/#def-subclass
https://www.infowebml.ws/rdf-owl/Class-rdfs.htm
https://www.infowebml.ws/rdf-owl/Class-rdfs.htm

<rdf:Description rdf:about="http://www.cidoc-crm.org/cidoc crm/datatypes/space_primitive">

<rdf:type resource=" http://www.w3.org/2000/01/rdf-schema#Datatype"/>

</rdf:Description>

And then the following query (select * datatypes) was executed to validate the work done:

select ?dt where {

?dt a <http://www.w3.org/2000/01/rdf-schema#Datatype> .

?dt rdfs:subClassOf <http://www.w3.org/2000/01/rdf-schema#Literal>

}

result[14][15][16]:

?dt
http://www.cidoc-crm.org/cidoc-crm/datatypes/space_primitive

Now we use this datatype to describe a birthplace:

<?xml version="1.0" encoding="utf-8" ?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema#

xmlns:crm="http://www.cidoc-crm.org/cidoc-crm/">

<rdf:Description rdf:about="http://example.com/actor/rob">

 <rdf:type rdf:resource="http://www.cidoc-crm.org/cidoc-crm/E21_Person"/>

 <rdfs:label>Rob</rdfs:label>

 <crm:p98i_was_born>

 <crm:E67_Birth rdf:about="http://example.com/event/rob_birth">

 <crm:p7_took_place_at>

 <crm:E53_Place rdf:about="http://example.com/place/rangiora">

 <rdfs:label>Rangiora</rdfs:label>

 <crm:P168_place_is_defined_by

rdf:datatype=“http://www.cidoc-crm.org/cidoc-crm/datatypes/space_primitive”>

 "POLYGON((172.565456 -43.285409, 172.622116 -43.285409, 172.622116 -43.323697, 172.565456

-43.323697, 172.565456 -43.285409))"

 </crm:P168_place_is_defined>

http://www.w3.org/2000/01/rdf-schema#Datatype
http://www.w3.org/2000/01/rdf-schema#Literal

 </crm:E53_Place>

 </crm:p7_took_place_at>

 </crm:E67_Birth>

 </crm:p98i_was_born>

 </rdf:Description>

</rdf:RDF>

3. Instantiating E94 with a file:
In the this version of the above example the place is defined by a shape file:

<?xml version="1.0" encoding="utf-8" ?>

<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema#

xmlns:crm=http://www.cidoc-crm.org/cidoc-crm/>

<rdf:Description rdf:about="http://example.com/actor/rob">

 <rdf:type rdf:resource="http://www.cidoc-crm.org/cidoc-crm/E21_Person"/>

 <rdfs:label>Rob</rdfs:label>

 <crm:p98i_was_born>

 <crm:E67_Birth rdf:about="http://example.com/event/rob_birth">

 <crm:p7_took_place_at>

 <crm:E53_Place rdf:about="http://example.com/place/rangiora">

 <rdfs:label>Rangiora</rdfs:label>

 <crm:P168_place_is_defined_by>

 <crm:E94_Space_Primitive rdf:about="http://example.com/file/rangiora.shp">

 <rdfs:label>Rangiora.shp</rdfs:label>

 <crm:p2_has_type rdf:resource="http://example.com/type/ESRIshapefile"/>

 </crm:E94_Space_Primitive >

 </crm:P168_place_is_defined_by>

 </crm:E53_Place>

 </crm:p7_took_place_at>

 </crm:E67_Birth>

 </crm:p98i_was_born>

 </rdf:Description>

</rdf:RDF>

[1]http://www.cidoc-crm.org/sites/default/files/2017-09-30%23CIDOC%20CRM_v6.2.2_esIP.p
df

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.cidoc-crm.org/cidoc-crm/

[2] The metamodel of the CIDOC CRM is actually one of the variants of knowledge
representation models that uses generalization / specialization constructs as object-oriented
models do. An exact definition can be found in (Meghini & Doerr 2018).
[3] http://www.cidoc-crm.org/sites/default/files/cidoc_crm_v6.2-draft-2015August.rdfs
[4] The only classes it does not define are the class E59 Primitive Value and its subclasses.
How these are implemented will be described later in this text
[5] Insert URL of OWL version
[6] A “digital surrogate”, such as a 3D model of an object, must not be confused with the real
thing it depicts. It does not bring the real thing into a machine.
[7] This does not strictly hold for texts. The problem of text identity is discussed in the section
“Recording String Values”.
[8] This is the scope note of E59 Primitive Value of the CIDOC CRM version 6.
[9] The concepts E47 Spatial Coordinates,crmgeo: SP5 Geometric Place Expression,
 crmgeo:Q10 defines place and P168 place is defined by (defines place) will be revised
soon. E94 Space Primitive should replace E47 Spatial Coordinates and SP5 Geometric
Place Expression. P168 place is defined by (defines place) should replace Q10 defines
place. It may be useful in the CRM RDFS to specify two subproperties of P168, one having
as range “geo:wktLiteral” and another “ogc:gmlLiteral”.

[10] https://en.wikipedia.org/wiki/Prism_(geometry)
[11] https://en.wikipedia.org/wiki/Doerr
[12] http://www.cidoc-crm.org/sites/default/files/CRMpc_v1.1_0.rdfs
[13] https://www.w3.org/2004/02/skos/
[14] https://www.w3.org/TR/swbp-xsch-datatypes/
[15] https://www.w3.org/TR/rdf11-concepts/
[16] http://infolab.stanford.edu/~melnik/rdf/datatyping/

http://www.cidoc-crm.org/sites/default/files/CRMpc_v1.1_0.rdfs
https://www.w3.org/TR/swbp-xsch-datatypes/

