Formalization of the CRM:
A first-order attempt

Carlo Meghini and Martin Doerr

Istituto di Scienza e Tecnologie della Informazione
Consiglio Nazionale delle Ricerche — Pisa

Iraklio, October 6th, 2015

Outline

» Introduction: Why, how, what
» Preliminaries

> A first-order theory of the CRM
» Post-reflections

>

Conclusions

Introduction: Why doing it?

A representation language without formal semantics in incomplete.
Cannot define inference, i.e., consistency checking and querying.

Cannot really evaluate whether the model correctly reflects and predicts
reality.

Communication to other researchers:

Understanding

Computational Research

>

>

» Comparison
» Extension
>

Experimentation

How to do it?

Choose your favourite theoretical tool:

» Mathematical Logic

» Computational Logic
» Set Theory

» Category Theory

>

you name it
My choice: mathematical logic, because | know it (a bit)
But the are also advantages:

» discourse formalization (syntax and semantics)
» argument formalization (proof)

» many results to use (e.g., description logics)

What did | do so far?

1. First-order logic translation of (parts of) the specs
2. Computational analysis of the resulting theory
> Result: the theory is tractable

3. Definition of what a KB is (not really needed for an ontology,
actually)

4. Theoretical implementation (in datalog)
Some things remain to be done:

1. Convince Martin and the SIG
2. Convince some journal editor

3. Practical implementation

Related Work

The work of formalizing in FO logic a semantic data model has been
done more than thirty years ago by Ray Reiter.

» From this work we draw the basic principles of our formalization.

» The CRM specification includes some constraints, e.g., shortcuts
and quantifications, that have not been treated by Reiter.

Shortcuts and quantifications (and much more) have been treated by
Description Logics, today mostly used via the Ontology Web Language of
the W3C.

We do NOT buy into DLs or OWL for several reasons:

1. OWL uses IRIs, we do not need to go that far
2. OWL does not cover strong shortcuts
3. OWL and DLs do not distinguish known from unknown individuals

We buy into Levesque & Lakemeyer L logic.

Preliminaries from Reiter’'s work

E39 Actor
o,n

o,n
— E51 Contact Point
P76 has contact point

(provides access to) 4 r

E1 CRM Entity

P88 consists of

(

forms part of)

E70 Thing
E41 Apg fon =— A
A P87 is iden/tified by P53 has|former or curfent location
(ideny/tifies) (is form| er or currentlfocation of)

E44 Place Appellation

A A A

E45 Address
E48 Place Name
EA47 Spatial Coordinates

P59 has sectior
(is located on or wi

P55 has curre]
(cufr ently]

thin

A

nt location
holds)

in

P58 has section

O,n[

E46 Section Definition |

(defines section)

o,n

| E18 Physical Thing |

0,1
E19 Physical Object

Classes

Classes are unary predicate symbols

Classes describe qualities of single individuals, have a time-less intension
(e.g., meaning) and a time-dependent extension (e.g., individuals, the
instances of the class).

For each CRM class, we introduce in our FO language a unary predicate
symbol, given by the class identifier.

» EB3 Place = E53

E1 CRM Entity

IsA links are conditionals:
> (Vx) [E53(x) D E1(x)]
For all individuals x, if x is a
E53, then x is a E1.
Disjointness constraints are negative conditionals:
E2 Temporal Entity is disjoint from E77 Persistent Item.

(Vx)[E2(x) > —~ET7(x)]

Properties

P88 consists of
(forms part of)
Properties are binary predicate symbols on

,

Properties describe qualities of pairs individuals (Carlo likes Brunello),
have a time-less intension (e.g., meaning) and a time-dependent
extension (e.g., pairs of individuals).

For each CRM property, we introduce in our FO language a binary
predicate symbol, given by the property identifier.

» P88 consists of = P88

Property IsA links are also expressed as conditionals:

P12 occurred in the preseﬁce of (was present at)
Pl11 - added (was added by)

(Vxy)[P111(x,y) D P12(x,y)]

P88 consists of

Properties also have domain and range o,n__(forms part of)

restrictions mﬂ on

These restrictions naturally translates as conditional axioms as well:

CRM Specification First-order logic
P has Domain C (Yxy)[P(x,y) D C(x)]
P has Range D (Vxy)[P(x,y) D D(y)]

e.g.,

> (Vxy)[P88(x,y) D E53(x)]
> (Vxy)[P88(x,y) D E53(y)]

Properties may be:

» symmetric: P114 is equal in time to (of time periods)
> transitive: P86 falls within (of time periods)

Conditionals are also good for these axioms, as we learn at the lyceum
(let’s drop universal quantifiers to make our formulas lighter):

» symmetric: P114(x,y) D P114(y,x)
> transitive: P86(x,y) A P86(y,z) D P86(x,z)

So far we have covered the basics.

Meta-Properties

A meta-property is a property whose domain is a property.

Meta-properties are modelled as 3-place predicate symbols:

> the first two places are given to the terms in the domain property,
> the last place is used for the type.

CRM Specification
P has Meta-Property P.n: C
P has Asymmetric Meta-Prop. P.n: C

Translation into first-order logic
P.n(x,y,z) O [P(x,y) A C(2)]
P.n(x,y,2) D [P(x,y) A =P.nly, x,z) A C(2)]

The corresponding axiom includes the assertion of the domain property in

the consequent, thus making it possible to omit it whenever a typing
statment is present.

Shortcuts

Property Type Shortcut (from the CRM Specifications)

P2 has type strong From E1 CRM Entity through P41 classified (was clas-

(is type of) sified), E17 Type Assignment, P42 assigned (was as-
signed by) to E55 Type

P43 has dimension weak From E70 Thing through P39 measured (was measured

(is dimension of) by), E16 Measurement, P40 observed dimension (was
observed in) to E54 Dimension

P53 has former or inverse From E18 Physical Thing through P161 has spatial pro-

current location weak jection, E53 Place, P121 overlaps with to E53 Place

CRM Specification Translation into first-order logic

Weak Shortcut Py ... P, [Pi(x,z1) A Pa(z1, 2) A ... A Po(zn, ¥)] D P(x,y)

Weak Inverse Shortcut Py ...
Strong Shortcut Py ...

Pn

P(x,y) D 3zi...z[Pi(x,z1) A ... A Pp(zn, y)]
P(x,y) =3z ... zy[Pi(x,z1) A . .. A Po(2n, y)]

Weak shortcut:
[P39(x, y) A P40(y, z)] D P43(x, z)

Note that from domain and range axioms it follows that x, y and z are
instances of E70, E16 and Eb54, respectively.

Likewise, inverse weak shortcut:

P53(x,y) D (3z)[P161(x, z) A P121(z,y)]

Property quantification

The definition of quantifiers is given in terms of two features:

» total property and
» functional property

that can be applied to a property or to its inverse. Therefore a property
or its inverse fall exactly into one of the following cases:

1. total and not functional, i.e., defined on every element of its domain
and can take up more than one value;

2. functional and not total, i.e., at most one value is provided for any
element of its domain;

3. the property is neither total, i.e., some domain elements can miss it,
nor functional, i.e., can take up more than one value for any element
of its domain;

4. both total and functional, i.e.all domain element must have one
value for it, and no more than one.

Translation:

» P is functional: [P(x,y) A P(x,y)] D> (y =y')

» P is total (on domain A): A(x) D JyP(x,y)

> the inverse of P is functional: [P(x,y) A P(x’,y)] D (x = x')
> the inverse of P is total (having range A): A(x) D JyP(y, x)

The complete translation of each quantifier can be obtained by
conjoining the translation of the corresponding features. For instance:

» many to many (0,n:0,n): P and its inverse are neither total nor
functional: no axiom
> one to one (1,1:1,1): P and its inverse are total and functional:
A(x) D FyP(x,y)
[P(x,y) NP(x.y)1 D (y =)
B(x) > 3yP(y, x)
[P(x,y) A P(X',y)] D (x = x')

Co-reference axioms

The well-known axioms for co-reference (or equality) are:

RefEq X =X

SymEq (x=y) D (y =x)

TransEq [(x=y)A(y=2)] D (x=2z)

LLCI (x=y) D [C(x) = C(y)]

LLPr [« = y1) A (2 = y2)] D [P(X) = P(¥)]

LLMP (1 = 1) A (e = y2) A (s = y3)] D [P.n(X) = Pn(¥)]

The last three sentences capture Leibnitz Law for the three kinds of
predicate symbols in L¢ and, unlike the previous three sentences, are
axiom schemas.

A FO theory of the CRM

By applying the rules above to the specification of classes and properties,
we obtain a set of axioms that make up the C first-order theory.

Some pleasant consequences (based on standard logical notions):

» We can talk of the C language, as the set of predicate symbols that
occur in the axioms
» We can validate the CRM:
> we can prove that the C axioms are consistent (hopefully :-))
> as well as any other property we think it's there
» We can defend the CRM: we can challenge the CRM's detractors to
prove what they say
> We can compare the CRM, by formally testing whether a language is
equivalent to, or less/more powerful than the CRM
» We can check whether an implementation is sound and complete
with respect to the C

Nothing particularly surprising, but a firm ground to start building.

But all this can be done ONLY with paper and pencil. Can we do
something automatically? Let’s take a retrospective look to the axiom
schemes that we have used for capturing the CRM:

SubC A(x) D B(x)
Dom P(x,y) > Dp(x)
Ran P(x.y) O Re(y)
SubP P(x,y) D Q(x,y)
SymP P(x,y) D P(y,x)
TransP [P(x,y) A P(y,z)] D P(x, z)
MetaP P.n(x,y,z) D [P(x,y) A E55(z)]
WSCut [Pi(x,z1) A... A Pp(za—1,y)] D P(x,y)
FuncP [P(x,y) A P(x.y)] (v = ")
FunclP [P(x,y) A P(x',y)] D (x = x')
DisC A(x) D —B(x)

AMetaP P.n(x,y,z) D =P.n(y, x, z)
WICut P(x,y) D (3z1...zp—1)[[Pi(x,21) A ... A Pn(zn—1,Y)]
TotP A(x) D (3y)P(x,y)
TotlP B(x) D (3y)P(y, x)
RefEq x = x
SymEq (x=y) D (y=x)
TransEq [(x=y)A(y=2)]D(x=2)
L (x =) 5 [C(x) = C(y)]
LLPr [(x1 = y1) A (2 = y2)] D [P(X) = P(¥)]
LLMP [(x1 = y1) A (2 = y2) A (x3 = y3)] D [P.n(X) = P.n(y)]

The structure of the C axioms is very close to that of definite program
clauses (DPCs):

Vxl...x,,(Bl/\.../\Bk)DA

where each of the A, By, ..., By is an atom.

This closeness suggests that a datalog implementation of C may be
possible, as long as we can deal with:

» the negation in the axioms schemas in the middle group; and

> the existential quantication in the axioms schemas in the bottom
group.

Removing negation

In order to remove negation, we introduce complementary classes and
complementary meta-properties and state the disjointness between a
class or a meta-property and its complement by using a special axiom
leading to a contradiction.

For each unary predicate symbol B in L¢, we introduce a new unary
predicate symbol B and replace the DisC axiom schema A(x) D —B(x) by

A(x) D B(x)
B(x)AB(x) D L

where L is a contradiction; e.g., replace E2(x) D —E77(x) by:

E2(x) D ET7(x)
E77(x) ANET7(x) O L

We will see soon how L can be expressed.

Likewise, for each ternary predicate symbol P.n in Lc, we introduce a
new ternary predicate symbol P.n and replace each AMetaP axiom
schema P.n(x,y,z) D =P.n(y,x, z) by:

P.n(x,y,z) D P.n(y,x,z)
P.n(x,y,z) A P.n(x,y,z) D L

A new set of axioms is obrained from 7¢, which we denote as 7.

7?“ is expressed in a new language that has no negation and a new set of
predicate symbols.

Intuitively, 7¢ and TC+ are equivalent sets of axioms, since they state the
same constraints in different ways.

Formally, we have proved the equivalence.

Removing existential quantification

Skolemization: replacing each existential variable with a new constant,
i.e., a constant that does not occur in the KB.

This amounts to replace the axiom schemas of the third group by:
WICut [P(X y) VAN S,'(hl, ey h,,,l)] D) [Pl(X, hl) AN Pn(hnflay)]

TotP [A(x) A Ti(h)] > P(x, h)
TotlP [B(x) A V;i(h)] D P(h,x)

where h, hy,..., h,_1 are new constants. Note that we use:

» one of the S; for each instantiation of the WICut schema and for
each strong shortcut

» one of the T; for each instantiation of the TotP schema
» one of the V; for each instantiation of the ToTIP schema.

Si, T; and V; play the role of generators of new tuples of constants.

By instanting these schemas in place of the replaced ones, we obtain a
new set of axioms that we denote as 7.

Re-writing the co-reference axioms

RefEq is not a DPC, but it states a mathematical property of
co-reference that does not have any computational import, so we drop it.

SymEq and TransEq are clearly DPCs.

Each one of the three Leibnitz Laws can be restated into an equivalent
DPC. For LLCI:

LLCiL [
LLCi2 [

Now, LLCI2 can be derived by SymEq and LLCI1, so it can be dispensed
with. We are therefore left with LLCI1. So we replace LLCI, LLPr and
LLMP by:

LLCIT [(x = y) A C(x)] D C(y)
LLPr1 [(a=»)A (e =y
LLMP1 [(xy =

Knowledge Bases

Our job would be finished here, because we have reached an
axiomatization of the CRM, and even one that can be computed with.

But why stop here?
After all, the CRM is created to be used in information systems.
So, we go on defining what a CRM knowledge base (KB) could be.

To begin with, a C KB is a set of sentences of the C language, including
the axioms.

But what kind of sentences do we expect to find in a CRM KB?

Besides the axioms, we expect KB to hold a description of the state of
the world, including the individuals in the domain of discourse.

But what kinds of individuals do we expect to find in a CRM KB?

Individuals and the CRM

The individuals in the domain of the CRM are:

» CRM-entities, which include appellations, and

> primitive values.

The CRM models these individuals as objects, identified by object
identifiers. We note that the CRM object identifiers have the following
features:

1. at any time, each identifier denotes only one object;
2. at any time, no two identifiers denote the same object;

3. each identifier denotes the same object throughout the whole KB
lifetime.

The logical counterpart of objects identifiers are constant symbols, which
satisfy the first feature above, because in any interepretation each of
them denotes one individual of the domain.

However, constant symbols:

» do not satisfy the second feature because nothing prevents two
constant symbols to co-refer in a specific model of the KB, that is
to denote the same individual;

» do not satisfy the third feature above either, because a KB may
have, at a given point during its lifetime, more than one model; and
nothing prevents the same constant symbol to denote different
individuals in two such models.

The problem posed by the second feature may be solved by introducing
the unique name axiom. The problem posed by the last feature, however,
remains.

Fortunately, a solution to this problem is presented by Levesque and
Lakemeyer, in the form of a convention that consists in introducing a
special category of symbols, called standard names and given by ny, ny,

Standard names

Standard names behave exactly as the CRM identifiers, they are
one-to-one with the individuals in the domain of discourse in all possible
worlds.

They denote known individuals.

So, to represent that the city appelled as Pisa is known, we use a
standard name for it, say n;. And to state that the city called Pisa is in
fact the object that we know, we state co-reference:

Pisa = n;

On the contrary, just knowing Pisa= Vituperio_delle_genti does not
amount to have identified neither Pisa nor Vituperio_delle_genti.

We therefore use standard names to represent individuals in the domain
of discourse of the CRM.

n; = n; is a contradiction if i # j, so we can use it in place of L.

Do we need any other type of individuals?

Constants

In the KB lifetime, the user may need to represent knowledge about
individuals whose identity is presently uncertain, in the sense that:

> it is not known whether these individuals have already been assigned
a standard name in the KB, or

» which standard name that would be.

This uncertainty may be resolved at a later time, either by discovering
the standard name that is used for these individuals, or by ascertaining
that no standard name has yet been assigned to them.

But it is required that the KB be able to hold knowledge about these
individuals until their identity is cleared and a standard name is available
for them.

FO logic offers constant symbols for naming individuals whose identity
may vary from interpretation to interpretation, therefore we also include
constant symbols in our language.

Now that we have a language also for individuals, we turn to the contents
of a CRM KBs.

First of all, a KB must include the axioms derived from the axiom
schemas that provide a representation of the meaning of the terms in the
L vocabulary, e.g.:

E4(x) D E5(x)

Likewise, to capture that P4 has time-span is a functional property, we
instantiate the FuncP axiom scheme and obtain the C axiom:

Pa(x,y) AN PA(x,y") D (y =)

and so on. Without these axioms, collectively called ontological
knowledge, we cannot be sure that the KB exhibits the intended
behavior, for instance when querying it.

Second, a KB must contain sentences representing the state of the world
in the domain of discourse. These sentences form domain knowledge.

We envisage two kinds of domain knowledge

1. instantiation literals, representing the instantiation of classes and
properties, e.g.E81(ny), P1(Tom, “Tom") or P12(ny5, bob)

2. co-reference literals, representing the referential relationships
between the constants and the standard names.

Co-reference literals come in two sorts:

> Positive co-reference literals:

> (n = a) asserting co-reference of a constant a and of a standard
name n; this is a strong piece of knowledge, allowing to identify the
individual named a.

> (a = b) asserting co-reference of two constants a and b; this atom
does not give an equally vivid knowledge as the previous one, yet it
allows to reduce the uncertainty in the KB by establishing
co-reference of two constants.

» Negative co-reference literals:

> (n # a) asserting that the individual named a is not identified by n;
> (a # b) asserting non-coreference between constants.

CRM KB defined

We can now define formally a CRM KB.
A C KB K as a pair £ = (7¢,.A), where:

1. 7¢, the TBox of K, includes the CRM axioms, obtained by
instantiating the axiom schemas introduced in the previous Section;

2. A, the ABox of K, is a finite, possibly empty set of instantiation and
co-reference literals, as discussed above.

And now ...

» we can talk about a model of a KB, as any interpretation of the
language that satisfies all the axioms and the sentences in the KB

» we can talk about the consistency of a KB

» we can talk about reasoning in CRM because we have an inference
relation KB | «

We can define formally the interaction with a KB, thereby separating
once for all the theory from its implementation:

» TELL(KB,s), where s is a sentence of our language

» we have a query language: the set of open formulas of the language
> e.g., E55(x) A Jy[P27(x,y) V =P72(x, y)]

> ASk(KB,a), wehre « is a query

> we can use the inference relation to define the answer to a query

Let's do it

The axioms in the set 77 are DPCs that can be expressed as datalog
rules forming a datalog program that we call Pe.

Pc is derived from rule schemas, in the same way the actual axioms of C
are derived from the first-order axioms schemas.

For instance, rule scheme SubC gives raise to the actual P¢ rule:
E4(x) + E5(x)
based on the C axiom (Vx)E5(x) D E4(x).

Likewise, rule scheme FuncP gives raise to the actual P¢ rule:

(y =y') < PA(x,y), PA(x,y")

We can now apply the program P¢ to the literals in the ABox and derive
all positive implicit literals in our KB.

For instance, if we have the literal E5(n) in our KB, we derive E4(n)
from it, by applying the rule

E4(x) < E5(x)

However, the users of a CRM KB are also interested in the implicit
negative knowledge, and it is not difficult to see that P¢ is not sufficient
to capture all such knowledge.

Let’s see what kind of inference we want to be able to make, returning
for a moment to first-order.

Suppose a KB includes —=E4(n,) in its ABox. Together with rule
E4(x) < E5(x), this implies =E5(ny).

A sound and complete first-order inference system, such as one based on
resolution, would indeed derive =E5(n,).

But there is no way to obtain =E5(n2) (or its corresponding complement
E5(ny)) from Pc. This is not surprising, since datalog aims at deriving
positive atoms that can be seen as elements of the interpretation of a
program.

We need to add more rules to those of P¢ in order to be able to derive
the implicit negated atoms by means of a datalog-based inference
system. In particular, we need to add the rule

E5(x) + E4(x)

to our TBox in order to be able to derive E5(n,).

However, we must be aware that not all negative knowledge is equally
desirable.

Let’s consider a scholar who is developing a KB K powered by a sound
and complete inference engine about whether or not Dante Alighieri
(standard name D) was present at the event (standard name b) of the
birth of Francesco Petrarca.

This piece of knowledge can be represented in the CRM by using
property P12 occurred in the presence of (was present at), linking an
event (instance of E5) to a persistent item (instance of E77) that was
present at the event.

Now, our scholar enters E21(D), E63(b) and =P12(b, D) (“Dante was
not present at the birth of Petrarca”) in the ABox.

Now the scholar checks K out and finds that it contains the three
assertions that he has inserted, but in addition it contains also the
assertion =P12(D, b) (“Dante did not occur in the presence of the birth
of Petrarca") of no meaning and no use.

Why?

Well ...

» E21(D) implies E77(D) which implies =E2(D) by disjointness

» if D is not an event, then D is not in the domain of P12, hence it
cannot be true that P12(D, b) (no matter what b is) and therefore
its negation ~P12(D, b) is true.

In fact, =P12(x, y) is true of all the x that are not events, or of all the y
that are not persistent items (as b in the last example), or both.

And the same applies to every other property.

In other words, if the ABox of a KB contains all negated atoms that
follow from the explicit knowledge, we may end up with a very large set
of true but totally irrelevant facts.

The semantics of negation makes this unpleasant fact unavoidable.

However, in our language we do not use negation directly, but we
simulate it through complements. This gives us the possibility of avoiding
undesired negative knowlede in our KB.

Relevance criterion for negative knowledge: we accept negated property
instantiation atoms ﬁ(i,j) or meta-property instantiation atoms
P.n(i,j,t) in the ABox of a KB only if i is an instance of the domain of
P and j is an instance of the range of P.

In other words, we consider relevant only negated atoms that involve
instances of the proper classes, therefore sentences like P12(D, b) would
generate an inconsistency if inserted into the KB.

For co-reference, the above criterion translates quite naturally as follows:
we accept negated co-reference instantiation atoms (i # j) in the ABox
of a KB only if i and j are instances of same class.

In order to implement this criterion, we introduce the following axiom
schemas:

RDom P(x,y) D Dp(x)

RRan P(.¥) D Re(y)
RMetaP ,2) D P(x,y)

P.x(x,y
RCo (x #)AC(X) (¥)

Happily, all these axioms are DPCs.

Notice that the same axioms would create undesired results, if expressed
through negation. For instance, RDom would be expressed as

—P(x,y) D Dp(x). On the other hand, Dom is P(x,y) D Dp(x).
Considered together, these axioms imply (Vx)Dp(x), a definitely
undesired outcome.

The datalog program P is so obtained by introducing complementary
rule schemas.

> the complementary rule schemas corresponding to Dom, Ran and
the second MetaP would violate the relevance criterion stated
above, and threfore they are subsistuted by rule schemas encoding
RDom, RRan and RMetaP, respectively;

» WICut, TotP and TotIP do not have any corresponding rule schema,
because the body of each such rule would contain a negated
instantiation atom in which a new name h, hy, ..., h,_1 occurs.
Such atoms can never be true, because new names are by definition
used only in positive instantiation atoms;

» ClUn, CIBin, CITer and CICo are tautologies used solely for
detecting inconsistencies and have therefore no corresponding
complementary rule schema.

Now we can compute all implicit literals.

Computing implicit literals

The ABox A of a KB can be viewed as an instance of the symbols in the
datalog program Pe.

By applying P¢ to A, the minimal model A* of P¢ is obtained in an
efficient manner, that is using limited space and time resources.

A* includes the following types of atoms:

» The explicit instantiation atoms in A and those derived from A by
applying the rules in Pc. For instance, assuming that E5(1) is an
instantion atom in A, the atom E4(1) is in A*.

» The explicit co-reference atoms in A and those derived by applying
the rules in Pc. For instance, assuming that P4(1,2) and P4(1, a)
are instantiaton atoms in A, due to rule for the functionality of P4,
the atom (2 = a) is in A*.

> Inconsistent atoms of the form (n; = ny) with ny different from n,.

Inconsistent atoms may result from two different types of derivation
paths:

» from the application of one of the rules having the sentence in their
heads, i.e., either rule CIEq or an instance of one of ClUn, CIBin,
ClITer. In this case an individual is instance of a predicate symbol
and of its complement, which is an obvious inconsistency;

» from the application of one of the rules having a co-reference atom
in their heads, i.e., either rules SymEq, TransEq or an instance of
one of FuncP, FunclP. In this case two different standard names,
and possibly some constants, have been associated to the same
individual through a functional property, and this too is an obvious
inconsistency.

If an inconsistent atom is in A*, then the application of P¢ to the KB
reveals an inconsistency in the KB.

Skolemization preserves satisfiability, so the algorithm just outlined offers
a sound and complete method for the checking the consistency of any L¢
KB as defined above.

Otherwise, the the application of P¢ transforms a KB K = (T, A), into
a new KB K* = (7¢, A*) that is an expansion of K, the closure of K,
including all implicit literals in .

The closure of a KB is a natural candidate to compute the answers to
the queries stated against the KB.

Conclusions
We have:

1. a first-order expression of the CRM, for documentation and analysis
purposes

2. a definition of a CRM KB, able to handle elementary positive and
negative knowledge, whose consistency can be checked in an
efficient manner (with some adjustment on unknown individuals).

> If all this is sound, we have the beginning of a possible
implementation.

What's missing:
» Querying: we can use all the power of datalog to write recursive

queries, which turn out very useful on graphs.

> But these are just the simple queries.
» We want the difficult ones :)

Thank you!

We want to see the hard ones ...

