A first-order logic expression of the CIDOC Conceptual Reference
Model

Carlo Meghini and Martin Doerr

1 Introduction

The CIDOC Conceptual Reference Model! (hereafter CRM) is a well-known conceptual modelling language
for documenting cultural heritage artifacts, with a special attention to museum objects. CRM is an ISO
standard since 2006 (ISO21127:2006).

The CRM is specified in a semantic data modelling style and relies on consolidated notions for the represen-
tation of knowledge such as classes, properties, IsA hierachies, domain and range constraints and cardinality
restrictions. These notions are considered sufficiently clear and unambiguous both in the documentation and
in the standardization communities. The CRM specification has been used several times for implementing
the model, and some of these implementations support large knoweldge bases, such as the one at the British
Museum. The status of the CRM as a data definition language is therefore quite solid, from a practical point
of view.

However, the CRM still lacks a formal specification of its semantical and inferential apparatus. This lack
makes it difficult to clearly define fundamental operations on a CRM knowledge base, such as querying or
consistency checking, while preventing any investigation on the computational properties of the language.

The lack of formalization of semantic data models has been one of the two main motivations for the devel-
opment of Description Logics [2], the other motivation being computational amenability. Description Logics
are the theoretical counterpart of the Ontology Web Language (OWL) [4], a distinguished memeber of the
Semantic web suite. This suite includes also the Resource Description Framework (RDF), a rather basic
knowledge representation language endowed with a model-theoretic semantics [5]. RDF offers a vocabulary
for semantic modelling known as RDF Schema [3]. It would seem natural, then, to resort to one of these
languages to express the inferential apparatus of the CRM. There are several reasons why we will not follow
this route.

First, both RDF and OWL have a syntax that is closer to that of implementation language rather than
to a specification language; for instance, they use International Resource Identifiers as non-logical symbols,
which are hard to read and unnecessary for our purposes. Second, and more important, our study will show
that none of these languaes has the expressive power required by CRM: RDF Schema does not allow to
capture property quantification, while strong shortcuts are not expressible in OWL. Third, it turns out that
the treatment of individuals at the basis of the CRM cannot be captured even by standard first-order logic,
let alone Description Logics, which are contractions of standard first-order logic.

For these reasons, we have chosen to express CRM as an instance of the first-order logic £, defined in [6].
This logic extends the classical predicate calculus with a referential apparatus based on standard names
that adequately captures the treatment of individuals of the CRM. Happily, this choice does not prevent to
achieve computational tractability.

The logical formalization is expected to bring several advantages to the CRM, from a scientific point of view.
In particular, the first-order logic expression of the model may serve as a better communication medium
with other researchers, allowing for a better understanding of the CRM that can serve several purposes:

Version 5.1.2 [11]. The current CRM specification is being used by the ISO working group ISO/TC46/SC4/WG9 as
community draft for the regular revision of ISO21127 due after 5 years and expected for 2015.

— appreciating the CRM’s underlying ontological decisions;

— enriching the CRM with knowledge representation mechanisms that are well understood and as such
transferrable with no special effort, such as n-ary relations, tractable forms of negation, or simple role
constructors, just to mention a few;

— extending the CRM to new domains or to aspects of knowledge representation that are not dealt with
by the current version.

Finally, logic provides a language for expressing constraints that go beyond the representation machinery
of object-oriented modelling, and which may turn out to be useful in more refined definitions of the CRM.
Logic also provides two useful notions, such as consistency and implication; consistency is important for the
integrity of a CRM knowledge base, while implication is important for extracting knowledge from a CRM
knowledge base.

From a knowledge representation point of view, the present study can be viewed as an attempt at defining
the knoledge level of a CRM knowledge base [9].

The paper is structured as follows: we will start by examining the expressive requirements of the CRM
(Section 2). Based on the results of this examination, we will define the first-order language L for the logical
expression of the CRM (Section 3). Next, we will introduce the axioms that capture the CRM ontology. We
will then define the notion of knowledge base and query, thus concluding the logical formulation of the CRM
(Section 5). The remaining part of the paper (Section 6) is devoted to design a datalog-based implementation
of a knowledge base. Section ?? concludes.

2 Expressive Requirements of the CRM

In this Section, we examine the basic principles of the CRM in order to obtain a clear understanding of
its expressive requirements. We start by outlining a general correspondence between semantic data models
and logical languages. Subsequently, we will consider the specific features of the CRM. As a notational
convention, CRM terms are written in Sans Serif, e.g. E1 CRM Entity, while first-order symbols are written
in italics, e.g. F1 CRM Entity.

2.1 From the CRM to logic: first principles

The correspondence between semantic data modeling and first-order logic has been defined in detail in [10]
and will be used thorughout the paper for the logical capturing of the representational primitives of the
CRM and of some of its constraints. For the remaining constraints, we extend the work in [10] by presenting
the corresponding axioms.

The CRM specification is given in terms of the primitives of semantic data modelling. As such, it uses:

— objects to represent the individuals in the domain of discourse in a one-to-one fashion, such as the
object pisa standing for the city of Pisa; in the CRM, objects are called “items” in order not to confuse
them with physical objects; we will stick to “objects” for alignment with the standard practice in
semantic data modelling;

— classes to represent general notions in the domain of discourse, such as for instance the CRM class
E53 Place to represent the notion of a place;

— properties to represent the binary relations that link to each other the individuals in the domain of
discourse, such as for instance the CRM property P89 falls within linking a place to the region where
it belongs.

Ontological knowledge is expressed in semantic data models by means of various kinds of constraints, such
as IsA hierarchies. We will examine in detail the CRM constraints in Section 4. Factual knowledge, on the
other hand, is expressed in semantic data bases by means of instantiation. In particular,

— Class instantiation makes an object an instance of a class, thereby expressing the knowledge that the
corresponding individual belongs to the corresponding notion; for instance, in order to express that
the city of Pisa is a place, the object pisa is made an instance of class E53 Place.

— Property instantiation makes a pair of objects an instance of a property, thereby expressing the knowl-
edge that the corresponding relationship holds between the corresponding individuals; for instance, in
order to express that Pisa is in Italy, the CRM property P89 falls within is instantiated with the pair
of objects (pisa, italy).

In contrast to semantic data modelling, first-order logic-based knowledge representation relies on a language
for formally encoding knowledge in sentences. This language can be directly put in correspondence with the
elements of semantic data models as follows:

— objects are named by the constant symbols of the language, such as pisa;
— classes are named by unary predicate symbols, such as Place;

— properties are named by binary predicate symbols, such as falls within;

Ontological knowledge is expressed in logic by means of logical azioms, which correspond to the constraints of
semantic modelling. Factual knowledge is expressed in logic by means of ground atoms, such as Place(pisa)
and falls within(pisa,italy), which represent the same kind of knowledge expressed by the class and property
instances in semantic modelling.

These basic considerations can be used as general principles to establish a correspondence between the CRM
and a first-order logical language. However, our task requires to identify a specific first-order language L¢
that is able to capture the intended meaning of the CRM vocabualry. In order to achieve this goal, we will
build on the correspondence outlined above and carry out a detailed analysis of the features of the CRM, to
the end of determining the specific alphabet and syntax of L¢ that will be needed to express such features.

2.2 The individuals in the domain of discourse of the CRM

The Intended Scope of the CRM is? “all information required for the exchange and integration of hetero-
geneous scientific documentation of museum collections”, where “the documentation of collections includes
the detailed description of individual items within collections, groups of items and collections as a whole”.
This amounts to say that in a CRM KB we expect to find statements about individual items within museum
collections, other groups of such items and collections themselves. We will refer to these individuals as
CRM-entities.

Amongst the CRM-entities, a very important role is played by appellations. Appellations are the names that
CRM-entities are called, or have been called in their context of existence, and are included in a CRM KB
because the use and assignment of appellations are historical facts of great relevance. Indeed, the provenance
of museum objects can be verified by tracing appellation use without reference to any other feature. The
registration of all previous identifiers of a museum object is a requirement of the CIDOC? documentation
guidelines. This requirement is common to other domains: the Union List of Artist Names is a resource by
the Getty registering all names ever in use for artists; similarly, the Getty Thesaurus of Geographic Names
registers all names ever in use for places. Since museum objects, artists and places are all in the CRM scope,
appellations have been introduced to document the names these resource have had at any time. Technically,
appellations are instances of the CRM class E41 Appellation, which has several sub-classes, each capturing
a specific name type (e.g., place, time or agent appellations, titles, and others). An appellation is therefore
a CRM-entity of a special kind: it is a piece of language, entirely identified by its lexical form. This feature
of appellations will be taken into account in the development of the terms of Le¢.

As it turns out, CRM-entities are not the only individuals in the domain of discourse of a CRM KB. There
are also individuals that lie outside the intended scope of the CRM but are nevertheless related to the CRM

2All quotations in this Section are from Section “Scope of the CIDOC CRM?” of [11]
3CIDOC is the International Committee for Documentation of the International Council of Museums

entities and as such they must be documented in a CRM KB. Examples of these individuals are numbers,
temporal intervals, and geometric regions. In the CRM, these individuals are called primitive values and are
instances of the CRM class E59 Primitive Value which is the only CRM class that is not a sub-class of E1
CRM Entity. In this sense, primitive values make up the complement of the CRM domain proper. However,
since a KB needs to refer to primitive values, they are modelled in the CRM as first-class objects, although
no knowledge about primitive values is expected to be represented in a CRM KB. Indeed, no CMR property
has E59 Primitive Value as domain, while a few classes have it as range. In the present version of the CRM,
there are just a few sub-classes of E59 Primitive Value, but these sub-classes may be expected to vary, in
particular: the set of these classes will shrink as the CRM is extended and some primitive values become
citizens of the CRM, or will enlarge as the CRM is applied to new domains and new primitive values are
needed.

In sum, the individuals in the domain of the CRM are: CRM-entities, which include appellations, and
primitive values. As pointed out in the previous Section, the CRM models these individuals as objects,
identified by object identifiers. We note that the CRM object identifiers have the following features:

1. at any time, each identifier denotes only one object;
2. at any time, no two identifiers denote the same object;

3. each identifier denotes the same object throughout the whole KB lifetime.

The logical counterpart of objects identifiers are constant symbols, as pointed out in the previous Section.
Indeed, constant symbols satisfy the first feature above, because in any interepretation each of them denotes
one individual of the domain. However, they do not satisfy the second nor the third feature. They do not
satisfy the second feature because nothing prevents two constant symbols to co-refer in a specific model of
the KB, that is to denote the same individual. They do not satisfy the third feature above either, because
a KB may have, at a given point during its lifetime, more than one model; and nothing prevents the same
constant symbol to denote different individuals in two such models. The problem posed by the second feature
may be solved by introducing the unigue name aziom [10]. The problem posed by the last feature, however,
remains. We conclude that constant symbols do not provide an adequate representation of the intended
meaning and use of CRM object identifiers.

Fortunately, a solution to this problem is presented in [6], in the form of a convention that consists in
introducing? a special category of symbols, called standard names and given by nq, ns, Standard names
behave exactly as the CRM object identifiers, that is they are one-to-one with the individuals in the domain
of discourse in all possible worlds. Technically, this amounts to consider the space of all terms in the language
as partitioned into equivalence classes, the equivalence relation being co-reference: two terms are in the same
equivalence class if and only if they refer to the same individual. The resulting equivalence classes are named
by the standard names ni, ng, ...and it is established, as a convention, that a term is identified just in case
it is possible to name which equivalence class it belongs to. So, to know that Pisa co-refers with standard
name ny, written Pisa=n7, means by convention to know which individual in the domain Pisa is. On the
contrary, just knowing that Pisa= Vituperio_delle_genti does not amount to have identified neither Pisa nor
Vituperio_delle_genti.

We therefore introduce a countably infinite set D¢ of standard names that are in one-to-one correspondence
with the individuals in the domain of discourse of the CRM. D¢ will play both a linguistic and a semantic
role.

Notice that the standard names include all appellations one may want to use in a CRM KB. This does not
pose any problem, since D¢ is a countably infinite set, and can therefore accommodate any finite number of
countably infinite subsets. From a more theoretical point of view, some CRM classes, such as E60 Number,
have an extension that has the cardinality of real numbers, so a countable domain might seem indaquate
to account for such classes. But, as it is well known®, any consistent theory with an infinite domain has a
model at each infinite cardinality, therefore the restriction to a countable domain is not a limitation even
from a theoretical point of view.

4The text in this paragraph is taken from [6], page 22. We omit direct quotation for readability.
5The result is known as the Loewenheim-Skolem theorem.

The last requirement concerning individuals is the necessity of representing knowledge about individuals
whose identity is presently uncertain, in the sense that it is not known whether these individuals have
already been assigned a standard name in the current KB and which standard name that would be. This
uncertainty may be resolved at a later time, either by discovering the standard name that is used for these
individuals, or by ascertaining that no standard name has yet been assigned to them. But it is required that
the KB be able to hold knowledge about these individuals until their identity is cleared and a standard name
is available for them. As discussed above, first-order logic offers constant symbols for naming individuals
whose identity may vary from interpretation to interpretation, therefore we will also include constant symbols
in our language.

We are now ready to introduce the first-order language for capturing the inferential apparatus of the CRM.

3 The language L¢

L is derived from the language £ presented in [6]. It includes the sentences that are required in order to
axiomatize the CRM while at the same time allowing users to build KBs that realize the documentation
purposes reviewed in the previous Section.

3.1 Syntax

As customary in logic, the alphabet of L¢ includes two kinds of symbols: logical and non-logical symbols.

The logical symbols are the symbols whose usage and interpretation are fixed. The logical symbols of L are:

— countably many variables z,y,z ...;

countably many standard names ni, ns, For readability, we will also use strings of lowercase
characters between quotes as standard names for appellations;

— the co-reference symbol = naming the co-reference relation;

— the connectives - and V and the existential quantifier 3.

The non-logical symbols are the domain-dependent symbols. The non-logical symbols of L¢ are:

countably many constant symbols, or simply constants, a, b, ...;

— a unary predicate symbol for each CRM class, given by the unique identifier of the class name; e.g.,
E2 is the predicate symbol representing class E2 Temporal Entity;

— a binary predicate symbol Pn for each CRM property, given by the unique identifier of the property
name; e.g., P16 is the predicate symbol representing property P16 used specific object (was used for);

— a 3-place predicate symbol for each CRM meta-property, that is property having a property as domain.
The first two places are given to the instance of the domain property, the last place is used for stating
the type of that instance. The predicate symbol representing each meta-property is derived in the
same way as the predicate symbol representing each property.

The terms of L¢ are constants, variables and standard names.

The atoms of L¢ are expressions of the form P(t1,...,tx) where each ¢; is a term.

A ground atom is an atom P(t1,...,t;) where each ¢; is a constant or a standard name.

A primitive atom is a ground atom P(ny,...,n;) whose arguments are all standard names.

A formula of L¢ is one of the following:

— an atom;

— a co-reference formula of the form (¢; = t2), where ¢; and ¢y are terms;

— the negation of a formula —a;

the disjunction of two formulas (a V §);

— an existential quantification of the form Jz.«

A sentence of L¢ is a formula each variable of which is bound to one quantifier, i.e., a formula with no free
variables. As already pointed out, sentences are the elements of a logical KB, since they are used to express
both axioms (ontological knowledge) and ground atoms (factual knowledge).

As customary, we will consider sentences including the universal quantifier V and the connectives A (“and”),
D (“implies”) and = (“if and only if”) as part of L¢, obtained as abbreviations of the equivalent sentences
using the previously introduced symbols. For instance, the sentence Va. E70(x) D ET77(x), stating that every
E70 Thing IsA E77 Persistent ltem, is an abbrevation of the sentence ~(3x.E70(x) A =E77(x)), stating that
no thing is not a persistent item and which in turn abbreviates —(3z.—(=E70(x) V E77(z))) built with the
official connectives and quantifier. This last sentence is very hard to read, and this is why abbreviations are
introduced.

3.2 Semantics

The semantics of the language defines in a mathematical way the form of reality, that is the Universe of
Discourse of the language. The mathematical notion of reality is a world state, traditionally known as
interpretation. We prefer to use the former term, to keep with [6]. Moreover, semantics provides rules for
establishing the truth or falsity of the sentences of the language in a given world state.

A world state w consists of two elements:

— the domain of interpretation, which fixes the set of individuals that are part of the reality. In our case,
the domain of interpretation is fixed once for all to be the set of standard names D¢. In other words,
following [6] we make standard names both part of the language and part of reality.

— the interpretation function, which fixes the denotation of each syntactic construct of the language, and
uses that denotation to assign a truth value to every sentence of the language. For convenience, a
world state w is equated with its interpretation function, what in our case makes much sense, since
the domain of interpretation is for us fixed.

The denotation of standard names and constants is quite obvious:

1. to every standard name n, w assigns itself: w(n) = n;

2. to every constant a, w assigns a standard name: w(a) € De.

According to the first point, each standard name denotes itself in every world state. Thanks to this choice a
one-to-one correspondence between standard names and domain objects is established, satisfying at once all
three requirements on CRM individuals spelled out in Section 2.2. In fact, every occurrence of a standard
name in a sentence can be seen as an occurrence of the “real thing”, immediately revealing what the sentence
is referring to. In contrast, the interpretation of constants is not fixed, so that different interpretations may
assign different standard names to the same constant. This behavior respects the intuition that is at the
basis of constants: as already pointed out, constants are used whenever the identity of an individual is not
certain, which is to say that the individual at hand may be anyone of the known standard names.

The denotation of predicate symbols amounts to say which standard names belong to each class (technically,
this is the extension of unary predicate symbols), and which individuals are linked by each property and
meta-property (the extension of binary and ternary predicate symbols, respectively). This can be done with
a single rule as follows:

3. w assigns to every primitive atom o = P(nq,...,ng), either 1 or 0.

We recall that the primitive atoms are the atoms that have only standard names as arguments, and that 1
and 0 in the last definition represent true and false, respectively. The rule only considers primitive atoms,
because w maps every constant to a standard name, so all we need to consider is standard names.

In sum, in each world state w standard names always denote themselves, while the denotation of constant
and prodicate symbols varies from world state to world state; this accounts for the fact that there may be
several possible world states that comply with a knowledge base, due to the incompleteness of the knowledge.
Based on this information, a world state w can assign a truth value to each sentence of L¢ by means of the
following rules, which are the same for every world state. As customary, we use the notation w = « to mean
that « is true in world state w. The = relation is defined on all sentences of L¢ as follows, for every world
state w :

1. for every ground atom P(ti,...,tx), w E P(t1,...,tg) iff w[P(ny,...,ng)] = 1, where n; = w[t;] for
all 1 < ¢ < k. In words, for each argument ¢; in the given ground atom, we use the function w to
determine the standard name n; that ¢; denotes in w. Once all arguments are reduced to standard
names, the given ground atom becomes a primitive atom P(nq,...,nk), and we use again the function
w to determine whether this primitive atom is true.

2. w = (t; = t2) iff w(ty) is the same name as w(tz). We use the same method as in the previous point
to reduce each argument in a co-reference statement to the corresponding standard name. Then, the
co-reference statement is true just in case the resulting standard names are the same.

3. w | —a iff it is not the case that w = «. This is the standard definition of truth for negation: the
negation of a sentence is true in a world state just in case the sentence is false in the same state, and
vice-versa.

4. w E aV B iff either w = a or w = 5. This is the standard definition of truth for disjunction: the
disjunction of two sentences is true in a world state just in case at least one of the two sentences is
true in the same state.

5. w = Jx.« iff for some standard name n, w | af, where o is a with all occurrences of x replaced by
occurrences of n. An existentially quantified sentence is true in a world state just in case it is possible
to find a standard name n as a replacement of the variable that makes true the sentence resulting from
the replacement.

We can now use the classical definitions to define the inference relation of L. A world state w is a model of
a sentence « just in case « is true in w, i.e., w = «. A world state w is a model of a set of sentences S if it
is a model of every sentence in S. A set of sentences S is consistent if it has a model. A sentence « logically
follows from a set of sentences S, S |= a, just in case every model of S is also a model of a.

Now that we have a language and a semantics, we can encode the CRM ontology as axioms of the language,
and then use the inference relation just defined to establish basic properties of the CRM ontology.

4 The axioms of C

In order to derive the axioms of our CRM theory, in the next two Sections we will examine the definitions
of the classes and of the properties of the CRM, capturing (the formalizable part of) these definitions into
logical form.

4.1 Class axioms
A definition of a CRM class provides:

— the class name;

— the super-classes and the the sub-classes of the class; we will use only the latter information as the
former is redundant;

— a textual definition of the concept the class represents and some examples; this information is given in
natural language and will not be considered;

— a list of properties the class is the domain of; this information is also provided in the definition of
properties and will be considered in the next Section.

Translation of sub-class statements is obvious: the constraint A Subclass of B is captured by the sentence:
(V) A(z) > B(x) (1)

The sentence reads: for each individual x, if z is an A, then it is also a B. To exemplify, the constraint that
E70 Thing is a sub-class of E77 Persistent ltem is captured by the sentence

(Vx)E70(x) D E77(x)

which we have already seen previously.

For each subclass constraint in the CRM specification, an axiom of the form (1) goes into T¢. For this
reason, a sentence like (1) is called an aziom schema. For simplicity, from now on we will omit the universal
quantifiers in sentences and tacitly understand free variables as universally quantified.

Disjointness constraints capture incompatibility between classes or properties, making inconsistent any KB
in which such classes or properties share a common instance. The CRM makes the following class disjointness
statements®:

— E2 Temporal Entity is disjoint from E77 Persistent ltem.

— E18 Physical Thing is disjoint from E28 Conceptual Object.

In order to capture disjointness between classes A and B, we use the axiom schema:
A(z) D -B(z)

which reads: for each individual z, if x is an A, then it is not a B. This sentence is weaker than:
A(x) = -B(2)

which reads: for each individual xz, z is an A if and only if it is not a B. For every interpretation, the last
axiom forces every individual in the domain of the interpretation to be either in the extension of A or in
the extension of B. The weaker form, instead, allows individuals to be neither in the extension of A nor
in the extension of B, while keeping these extensions disjoint. We note that the weaker form is also the
interpretation of class disjointness in OWL [8§].

So we have the following two axioms in T¢ :

E2(z) > ~ET7(z)
E18(z) D ~E28(x)

Since disjointness axioms propagate down the IsA hierarchy, these two axioms sanction the disjointness of
many classes. But of course we do not need to state any of the corresponding axioms, because they logically
follow (in the sense defined in Section 3.2) from the instances of (1) and the last two axioms.

6pag. xv

4.2 Property axioms
A definition of a CRM property provides:

— the property name;
— domain and range specification;

— the super-properties and the sub-properties of the property; we will use only the latter information as
the former is redundant;

— the meta-properties, that is properties having the defined property as domain and a specified range;

— quantification, that is the possible number of occurrences for domain and range class instances for the
property;

— a declaration whether the property is symmetric or transitive;

— a textual definition of the concept the property represents and some examples; this information is given
in natural language and will not be considered, except if itindicates the shortcut that the property
defines.

All these aspects of a property are expressed as shown in Table 1. To illustrate, the domain axiom schema
reads: for each pair of individuals z and y, if x and y are linked by P, then x is an instance of class Dp.
Throughout the paper, we will use the symbol Dp to denote the class that is the domain of property P.

The range axiom reads in a similar way, it has the same premise and concludes that y is an instance of class
Rp. Similarly to domain, we will use the symbol Rp to denote the class that is the range of property P.

The sub-property axiom schema is analogous to the sub-class schema. Simmetry and transitivity axiom
schemas are easy to read.

CRM Specification Axiom schema

P has Domain Dp P(z,y) D Dp(z)

P has Range Rp P(z,y) D Rp(y)

P is a Subproperty of Q P(z,y) D Q(z,y)

P is Symmetric P(z,y) D P(y,x)

P is Transitive [P(z,y) AN P(y,2)] D P(z,z2)

Table 1: Axiom schemas derived from the specification of CRM property P.

Meta-properties, quantification and shortcuts are dealt with in a separate subsection below.

4.2.1 Meta-Properties

As already mentioned, a meta-property is a property whose domain is a property (hence the name): any
instance of a property associates an instance of the domain property with a value which is always an E55
Type. “Their purpose is to simulate a specialization of their parent property through the use of property

subtypes declared as instances of E55 Type””.

In the CRM definition, meta-properties are specified in the context of their parent properties. The definition
indicates the parent property and the type, as follows:

P has Meta-Property P.n: E55 Type

"page xvi

Property Type Shortcut (from the CRM Specifications)

P2 has type strong From E1 CRM Entity through P41 classified (was classified),
(is type of) E17 Type Assignment, P42 assigned (was assigned by) to E55 Type

P43 has dimension weak From E70 Thing through P39 measured (was measured by),
(is dimension of) E16 Measurement, P40 observed dimension (was observed in) to
E54 Dimension

P53 has former or inverse From E18 Physical Thing through P161 has spatial projection,
current location weak E53 Place, P121 overlaps with to E53 Place

Table 2: Examples of shortcuts in the CRM

The axiom schema capturing the above definition is:
Pn(z,y,z) D [P(z,y) A E55(2)]

which reads: if the individuals x, y and z are linked by P.n, then z and y are linked by P and z is a E55
Type. For example, meta-property P62.1 mode of depiction specializes the property P62 depicts (is depicted
by) by indicating the type of the depiction, which is a E55 Type. The instance of the above axiom schema
capturing this meta-property is therefore

P62.1(z,y,2) D [P62(x,y) A E55(z)]
Some meta-properties are defined to be asymmetric, as in:
P has Asymmetric Meta-Property P.n: E55 Type

In this case, the following additional axiom schema is required to capture asymmetry:

Pn(x,y,z) D -Pn(y,z,2)

4.2.2 Shortcuts

Some properties realize shortcuts, in the sense that an instance (a,b) of the property implies, or is implied
by a set of other instances involving other properties and classes, and forming a chain from a to b : (a,¢1)
(c1,¢2) ... (cpn,b). Table 2 presents some text fragments from the CRM Specifications describing the three
types of shortcuts in the CRM.

In general, a shortcut can be seen as a pair (P, S) where P is a property, called the shortcut property, and S
is a sequence of properties, called the shortcut path. The shortcut property of the top shortcut in Table 2
is P2, while its path is ((P41,P42). The CRM specification of a shortcut includes also the class where the
shortcut path originates and the classes met along the path. We ignore these classes as they can be derived
as the domains and ranges of the properties on the shortcut path.

As Table 2 shows, shortcuts come in three sorts:

— weak shortcuts, in which an instance of each of the properties on the shortcut path implies an instance
of the shortcut property;

— inverse weak shortcuts, that is weak shortcuts on the inverse properties, and therefore in them an
instance of the shortcut property implies an instance of each of the properties on the shortcut path ;

— strong shortcuts, which are both weak and weak inverse, and therefore establish an equivalence between
the shortcut property and the shortcut path.

10

A weak shortcut with property P and path (Py, Py, ...,P,) is captured by the following axiom schema:
(Ve,y) (321, .oy zn—1)[Pi(x, 21) A Pa(z1,22) A oo o A Pp(2n-1,9)] D P(z,y) (2)

which reads: for each x and y, if there exist z1,, 2o, . .. z,_1 such that: x is linked to z; by P; and z; is linked
to zo by P, and ...and z,_; is linked to y by P,, then x is linked to y by P. It is a known fact in logic that
(2) is equivalent to

Vo, 21, .oy 21, Y) [P1(z, 21) A Pa(z1,22) A ... A Pp(2n-1,9)] D P(x,vy)
which we write as
[Pr(z,21) A Pa(z1,22) Ao A Pr(2n-1,y)] D P(x,y) (3)
following the convention of omitting universal quantifiers. For example, the weak shotcut in the middle of
Table 2 yields the following axiom:
[P39(z,y) A P40(y, 2)] D P43(x, 2)
Note that from domain and range axioms it follows that x, y and z are instances of E70, E16 and Eb54,

respectively.

Similarly, a weak inverse shotcut is formalized as the following axiom schema:
P(.T, y) D (32’12’2 - anl)[Pl(aj, 2’1) A\ PQ(Zl, 2’2) VANPIAN Pn<2:n,1, y)] (4)
The shortcut shown in the bottom of Table 2 is captured by the following instance of the (4) schema:

P53(x,y) D (32)[P161(x, z) A P121(z,y)]

Finally, a strong shortcut is captured by using both the two axiom schemas (3) and (4) above.

4.2.3 Property quantification

The CRM specification includes constraints on the cardinality of properties, named quantification statements,
or simply CRM quantifier. For self-containedness, the definitions of the CRM quantifiers are reported in
appendix, in Table 58.

For the capture in L¢ of the property quantifiers, we follow a three step approach:

1. the definition of each CRM quantifier is reduced to an equivalent set of simpler statements. This is
done in Table 6, also given in the appendix. As a result of this step, we have that each quantification
statement can be expressed in terms of two simpler statements, total property and functional property,
that can be applied to the property or to its inverse. Therefore a property or its inverse falls into one
of the following cases:

(a) the property is only total, i.e., defined on every element of its domain, but can take up more than
one value;
(b) the property is only functional, i.e., at most one value is provided for any element of its domain;

(¢) the property is neither total, i.e., some domain elements can miss it, nor functional, 4.e., more
than one value can be provided for any element of its domain;

(d) the property is both total and functional, i.e.all domain element must have one value for it, and

no more than one.

2. each of the simpler statements obtained in the previous step is expressed as an axiom schema, as
follows:

8pag. xii-xiii

11

— P is a functional property: [P(z,y) A P(z,y’)] D (y = y') (for each individual z, y and ¢/, if = is
linked by P to y and ¥, then y and y’ are the same individual).

— P is a total property Dp(z) D (3y)P(x,y) (for each individual z, if x is an Dp, then it is linked
by P to some y).

— the inverse of P is a functional property: [P(x,y) A P(z,y)] D (z = 2’) (for each individual z, 2’
and y, if z and 2’ are linked by P to y, then x and 2’ are the same individual).

— the inverse of P is a total property: Rp(z) D (Jy)P(y,x) for each individual x, if x is an A, then
some y is linked by P to x).

3. the definition of each CRM quantifier is captured as a set of axiom schemas by conjoining the capture
of the simpler statements as shown in the previous point. We show how it is done for two CRM
quantifiers:

— many to many (0,n:0,n): no axiom schema is required;

— one to one (1,1:1,1) means that both P and its inverse are total and functional (here A and B
are the domain and the range pf property P, respectively). We then have the following axiom
schemas:

Dp(z) > (3y)P(z,y)
[P(x,y) A P(z,y")] D (y =)
Rp(z) D (3y)P(y,)
[P(z,y) A P(z',y)] D (z = ')

where the first two axioms capture totality and functionality of P, respectively, and the last two
axioms do the same for the inverse of P.

4.3 Co-reference axioms

In order to axiomatize quantification statements we have introduced co-reference, which will also play an
important role in ABoxes, as it will be showed later. We have therefore to introduce axioms to capture
the basic characteristics of co-reference. Co-reference axioms are identical to equality axioms, which are
well-known (see, e.g., [6]):

RefEq r=x

SymEq (z=y) D (y=12)

TransEq [(z=y)A(y=2)]D (z=2)

LLCI (x =y) D [C(z) = C(y)]

LLPr [(x1 = y1) A (22 = y2)] D [P(F) = P(¥)]

LLMP [(z1 =y1) A (22 = y2) A (x5 = y3)] D [Pn(Z) = Pon(y)]

The last three sentences capture Leibnitz Law for the three kinds of predicate symbols in £ and, unlike the
previous three sentences, are axiom schemas. We use the notation ¥ to denote the variables x1,zo,...,z,
in an n-ary term whenever these variables are just placeholders.

4.4 Recap: the axiom schemas capturing the CRM specification

Table 3 presents all the axioms schemas introduced thus far and the axioms for co-reference. Each axiom
schema is named after the CRM construct or the co-reference property that it captures, indicated on the
third column of the Table. The Table is also horizontally partitioned in four sections that will be used later
on.

For convenience, we will denote as T¢ the instances of the axiom schemas in Table 3, obtained by capturing
the CRM constructs as indicated in the previous part of this Section. Clearly, T¢ is a formulation of the
CRM ontology in the logic Lc.

12

Name Axiom schema
SubC A(z) D B(x) Subclass
Dom P(x,y) D Dp(x) Property domain
Ran P(z,y) D Rp(y) Property range
SubP P(z,y) D Q(x,y) Subproperty
SymP P(x,y) D P(y,x) Symmetric property
TransP [P(x,y) A P(y,z)] D P(x, z) Transitive property
MetaP P.n(z,y,z) D [P(x, y) A E55(2)] Meta-property
WSCut [Pi(z,z21) A ... A Py(zn-1, y)} P(z,y) Weak shortcut
FuncP [P(z,y) A P(ac, Yo y=yv) Functional property
FunclP [P(x,y) A P(a',y)] D (x = a) Functional inverse property
DisC A(z) D -B(x) Class disjointness
AMetaP P.n(z,y,z) D -Pn(y,z, z) Asymmetric meta-property
WICut P(x,y) D (3z1...2n—1)[[Pi(z,21) A A Po(2n-1,9)] Weak Inverse shortcut
TotP A(x) D (Jy)P(x,y) Total property
TotlP B(z) D (Jy)P(y,x) Total inverse property
RefEq z == Reflexivity of co-reference
SymEq (z=y) D (y=2x) Simmetry of co-reference
TransEq [(z=y)A(y=2)] D (v ==2) Transitivity of co-reference
LLCl (x=y) D [C(z) = C(y)] for every class predicate symbol C
LLPr [(z1 =wy1) A (z2 = y2)] D [P(Z) = P(¥)] for every property predicate symbol P
LLMP [(z1 = y1) A (2 = y2) A (23 = y3)] D [Pn(¥) = Pn(y)] for every meta-property

predicate symbol P.n

Table 3: Axiom schemas capturing the CRM constraints and co-reference

13

5 Knowledge Bases

Generally speaking, a CRM KB is a set of L¢ sentences that describe some slice of reality. We now turn to
the task of defining exactly what kind of sentences we expect to find in a CRM KB.

First of all, a KB must include the axioms that capture the logical relationships between the terms of the
Lc vocabulary. These axioms are derived from the axiom schemas introduced in the previous Section and
recapitulated in Table 3, by replacing the predicate symbols with actual predicate symbols in L¢, as described
in Section 4. For instance, to capture that the CRM class E5 Event is a sub-class of E4 Period, we instantiate
the SubC axiom scheme and obtain the C axiom:

E5(x) D EA(z) (5)

Likewise, to capture that P4 has time-span is a functional property, we instantiate the FuncP axiom scheme
and obtain the C axiom:
PA(z,y) N PA(z,y') D (y =y') (6)

and so on. Without these axioms, collectively called ontological knowledge, we cannot be sure that the KB
exhibits the intended behavior, for instance when querying it.

In addition to the ontological knowledge, a KB must also contain sentences representing the state of the
world in the domain of discourse. These sentences form domain knowledge. Based on the analysis carried
out in Section 2, we envisage two kinds of domain knowledge:

Firstly, there are sentences representing the instantiation of classes and properties, as discussed in Section 2.1.
In order to obtain a greater expressivity, we model also negative instantiation, asserting negative knowledge,
such as that an individual is not an instance of a class. We call these sentences instantiation literals, as they
are positive or negated ground atoms of L¢, in which both standard names and constants may occur, for
the reasons spelled out in Section 2.2. It turns out that in the scholarly world, which is one of the domains
addressed by the CRM, negative knowledge is as important as positive knowledge, if not more.

Secondly, there are sentences representing the referential relationships between the constants and the stan-
dard names, as discussed in tha last part of Section 2.2. We call these sentences co-reference literals, and
they come in two sorts:

— Positive co-reference literals, falling into one of the following categories:
— (n = a) asserting co-reference of a constant a and of a standard name n; this is a strong piece of
knowledge, allowing to identify the individual named a.

— (a = b) asserting co-reference of two constants a and b; this atom does not give an equally vivid
knowledge as the previous one, yet it allows to reduce the uncertainty in the KB by establishing
co-reference of two constants.

We exclude senteces of the form (ny; = ns) for obvious reasons: If ny and ny are different standard
names, then the sentece is a clear inconsistency that no user would ever state. On the other hand, if
n1 anf ny are the same standard name, then the sentence brings no information and, again, no user
could possibly be interested in stating it.

— Negative co-reference literals, falling into one of the following categories:

— —(n = a) asserting that the individual named a is not identified by n;

— —(a = b) asserting non-coreference between constants.

We exclude senteces of the form —(n; = ng) for reasons similar to those given for the exclusion of
senteces of the form (n; = no).

We are now ready to define a CRM KB. Following a standard practice in knowledge representation, a CRM
KB holds the ontological and the domain knowledge in separate sets of sentences, known as the TBox and the

14

ABox of the KB, respectively. While the TBox will be the same in every application, the ABox is expected
to vary from application to application.

Technically, we define a C KB K as a pair K = (T¢, A), where:

1. T¢, the TBozx of K, includes the CRM axioms, obtained by instantiating the axiom schemas introduced
in the previous Section;

2. A, the ABoz of K, is a finite, possibly empty set instantiation and co-reference literals, as discussed
above.

A CRM world state w is a model of a KB K just in case w |= « for each sentence o in (T¢ U A). A KB K is
consistent in case it has a model. A sentence o is a logical consequence of a KB K, K = o, iff ¢ is true in
all the models of K, or equivalently iff (7z U AU {—0o}) is not consistent.

A query q(Z) is any open wif of L¢. The answer to a query ¢(Z) against a C KB K, ans(q(Z), K) is the set
of tuples of standard names that are instances of the query in every model of K :

ans(q(%), K) ={n | K E q(i)}

The rest of the paper is devoted to design an implementation of a KB, relying on the basic machinery of
datalog.

6 A datalog-based implementation of the CRM

The structure of the C axioms is very close to that of definite program clauses (DPCs, for short), which are
sentences of the form [7]:
VIl...LEn(Bl/\.../\Bk) :)A

where each of the A, By, ..., By is an atom. This closeness suggests that a datalog implementation of C may
be possible, and in the rest of this Section we will show how this can be achieved.

6.1 Re-writing the CRM axioms as DPCs

In this Section, we re-write the C axioms in the TBox of a KB as equivalent DPCs, by removing negation and
existential quantification, and by suitably re-writing the co-reference axioms; the last two transformations
imply a loss in equivalence, but one can be afforded, as it will be argued.

6.1.1 Removing negation

Negation in a KB is used to state disjointness between classes (axiom schema DisC), asymmetry of meta-
properties (axiom schema AMetaP) and negated instantiation or co-reference atoms. Since it does not appear
in the body of any rule, negation can be handled without resorting to the techniques devised in datalog,
such as stratification [1]. A much simpler approach is indeed possible, which consists in introducing a new
set of predicate symbols, called complements, that are one-to-one with the predicate symbols in L¢, and that
stand for the negation of the corresponding predicate symbols.

Technically, for every predicate symbol in L¢, we introduce a new predicate symbol called the complement of
P. As customary, the complement of the co-reference symbol = will be denoted as #, while the complement
of any other predicate symbol P will be denoted as P. We then modify the set of axioms T, in the TBox of
a KB as follows:

1. replace any instance of the DisC axiom schema A(x) D —B(z) in the TBox of the KB by the corre-
sponding instance of the schema:
A(z) D B(x) (7)

15

e.g., axiom E2(x) D ~E77(x) is replaced by

E2(z) D ET7(x) (8)

2. replace any instance of the AMetaP axiom schema P.n(x,y,z) D =P.n(y,,2) in the TBox of the KB
by the corresponding instance of the schema:

Pn(z,y,z) D Pn(y,z, 2)

3. for each predicate symbol P in L¢ other than co-reference, add the axiom
P(Z) A P(Z) D (n1 = na) (9)

to the TBox of the KB, where n; and ngy are any two distinct standard names, e.g., E77(z) AE77(x) D
(n1 =mno)

4. for co-reference, add the axiom
(x=y)A(x#y) D (m =n2) (10)

to the TBox of the KB, where n; and ns are any two distinct standard names.

By so doing, a new set of axioms is obrained from T¢, which we denote as TCJr . Intuitively, T¢ and TCJr are
equivalent sets of axioms, since they state the same constraints in different ways. Formally, this is proved
by Propositions 1 and 2, given in Appendix.

Finally, we apply the above transformations to remove negation also from the ABox of a KB. To this end,
it suffices to replace:

1. any negated class instantiation atom —C(t) by C(t);

2. any negated property instantiation atom —P(t1,t2) by P(t1,t2);
3. any negated meta-property instantiation atom —P.n(ty,ts,t3) by P.n(t1,ts,t3); and

4. any negated co-reference atom —(t; = t3) by (t1 # t2).

The ABox A of a KB resulting from these replacements contains only ground atoms.

6.1.2 Removing existential quantification

In order to remove existential quantification from T¢, we resort to Skolemization, replacing each existential
variable with a new constant, i.e., a constant that does not occur in the KB. Technically, this amounts to
introduce a set of new predicate symbols S;, T;, and V; for holding new constants, and use these symbols for
replacing the axiom schemas of the bottom group in Table 3 by the following schemas:

WICut [P(ac, y) A\ Si(hl, RN hnfl)] D [Pl(x, hl) VANPIAN Pn<hn,1, y)]
TotP [A(z) ATy(h)] > Pla, h)
TotlP [B(x) AV;(h)] D P(h,x)

where h, hq,...,h,_1 are new constants. Note that we use one of the S; for each instantiation of the WICut
schema and for each strong shortcut, one of the T; for each instantiation of the TotP schema, and one of
the V; for each instantiation of the ToTIP schema. In practice, these symbols play the role of generators of
new tuples of constants. By so replacing the above axioms schemas, we obtain a new set of axioms that we
denote as Tj. As it is well-known, skolemization preserves satisfiability, therefore 77 is satisfiable iff Tg‘ is.

16

6.1.3 Re-writing co-reference axioms

Finally, we deal with the co-reference axioms, showing in the fourth group in Table 3. The RefEq axiom is
not a DPC, but it be dispensed with, since it states a mathematical property of co-reference that does not
have any computational import: no user will ever be interested in the fact that every term co-refers with
itself, nor this fact is going to be used for deriving new knowledge, as it can be checked from the rest of the
axioms. SymEq and TransEq are clearly DPCs. Each one of the three Leibnitz Laws can be restated into
an equivalent DPC. For brevity, we show how this can be done for LLCI, the other two can be trated in a
similar way. LLCl is equivalent to the conjunction of the following DPCs:

LLCIT [(z=y)AC(x)] D C(y)
LLCI2 [(z =y) AC(y)] D C(x)

It is not difficult to see that LLCI2 can be derived by SymEq and LLCI1, so it can be dispensed with. We
are therefore left with LLCI1. Based on these considerations, in the TBox T# we remove axiom RefEq and
replace the axiom schemas LLCIl, LLPr and LLMP, respectively, by:

LLCI1 [(z=y) AC(z)] D C(y)
LLPrl (=1 = 1) A (22 = y2) A P(Z)] D P(Y)
LLMP1 [(z1 = y1) A (22 = y2) A (23 = y3) A P.n(Z)] D P.n(y)

6.1.4 The program P

The axioms in the set T resulting from the transformations seen so far, are DPCs that can be expressed
as datalog rules forming a datalog program that we call Pz. The middle column of Table 4 presents the
rule schemas from which P is derived, in the same way the actual axioms of C are derived from the axioms
schemas in Table 3. In order to highlight the correspondence between the rule schemas of Tables 3 and
those in the second column of Tab 4, in the latter Table we have used the same rule schema names as in the
former, showed in the left column. For instance, rule scheme SubC gives raise to the actual Pe rule:

EA(z) + E5(x) (11)
based on the C axiom (5). Likewise, rule scheme FuncP gives raise to the actual P¢ rule:
(y =) « PA(x,y), PA(z,y) (12)

For brevity, P¢ is not reported.

However, the users of a CRM KB are also interested in the implicit negative knowledge, and it is not difficult
to see that P¢ is not sufficient to capture all such knowledge. To exemplify, let us consider a KB including
rule (11) in its TBox, and the negated instantiation atom —FE4(ns) in its ABox. These pieces of knowledge
imply =E5(nz2). A sound and complete first-order inference system, such as one based on resolution [7] would
indeed derive ~E5(ny). But there is no way to obtain =E5(ng) (or its corresponding complement E5(ns))
from Pe. This is not surprising, since datalog aims at deriving positive atoms that can be seen as elements
of the interpretation of a program.

It is not difficult to see that we need to add more rules to those of Pz in order to be able to derive the
implicit negated atoms by means of a datalog-based inference system. In particular, we need to add the rule

to our TBox in order to be able to derive E5(nz).
However, we must be aware that not all negative knowledge is equally desirable.

We will exemplify the last observation by considering a scholar who is developing a KB K establishing whether
or not Dante Alighieri (whom he denotes by the standard name D) was present at the event (standard name

17

b) of the birth of Francesco Petrarca. This piece of knowledge can be represented in the CRM by using
property P12 occurred in the presence of (was present at), linking an event (instance of E5) to a persistent
item (instance of E77) that was present at the event. So, the domain of P12 is E5 and its range is E77.
Further, we assume that the KB is powered by a sound and complete inference engine. Now, our scholar
knows that D is an instance of class E21 Person, while b is an instance of class E63 Beginning of Existence,
and he records this knowledge by entering the positive instantiation atoms E21(D) and E63(b) in the ABox
of K. Next, our scholar finds enough evidence that Dante was not present at the birth of Francesco Petrarca
and so he inserts into the K’s ABox the negated atom —P12(b, D) which reads “the birth of Petrarca did
not occur in the presence of Dante”, or alternatively, “Dante was not present at the birth of Petrarca”. Now
the scholar checks K out and finds that it contains the three assertions that he has inserted, but in addition
it contains also the assertion =P12(D,b). This sentence reads “Dante did not occur in the presence of the
birth of Petrarca” and is hardly of any use, in fact it does not even read correctly. So the scholar wonders
how came that such a useless, ungrammatical piece of knowledge ended up in his precious KB.

In search for an explation, he further inspects the KB and finds out that the atom —FE2(D) is also in the
ABox. The scholar is able to explain this fact: since £21 is a subclass of E77 which is disjoint from E2, any
instance of F21 is not an instance of E2, therefore ~FE2(D) is implicit in the ABox, and the inference engine
of the KB correctly derived it. But then, the scholar reckons, if D is not an event then D is not in the domain
of P12, hence it cannot be true that P12(D,b) (no matter what b is) and therefore its negation -P12(D, b)
is true. Again, soundness and completeness of the underlying inference engine explain also the presence of
this piece of knowledge in the KB. The scholar is now very satisfied to have found the explanation, but then
he wonders whether the inference engine of his KB is really useful.

The doubts of the scholar are amply justified. In fact, =P12(z,y) is true of all the x that are not events, or
of all the y that are not persistent items (as b in the last example), or both. And the same applies to every
other property. In other words, if the ABox of a KB contains all negated atoms that follow from the explicit
knowledge, we may end up with a very large set of irrelevant facts. The semantics of negation makes this
unpleasant fact unavoidable. However, in our language we do not use negation directly, but we simulate it
through complements. This gives us the possibility of avoiding undesired negative knowlede in our KB.

Technically, we set a relevance criterion for negative knowledge: we accept negated property instantiation
atoms P(i,7) or meta-property instantiation atoms P.n(i,j,t) in the ABox of a KB only if i is an instance
of the domain of P and j is an instance of the range of P. In other words, we consider relevant only negated
atoms that involve instances of the proper classes, therefore sentences like P12(D,b) would generate an
inconsistency if inserted into the KB. For co-reference, the above criterion translates quite naturally as
follows: we accept negated co-reference instantiation atoms (i # j) in the ABox of a KB only if ¢ and j are
instances of same class.

In order to implement this criterion, we introduce the following axiom schemas:

RDom P(z,y) D Dp(x)

RRan P(z,y) D Rp(y)
RMetaP = P.x(z,y,2) D P(z,y)
RCo (x#y) AC(z) D C(y)

Happily, all these axioms are DPCs.

Notice that the same axioms would create undesired results, if expressed through negation. For instance,
RDom would be expressed as =P(z,y) D Dp(z). On the other hand, Dom is P(z,y) D Dp(z). Considered
together, these axioms imply (Vz)Dp(z), a definitely undesired outcome.

The third column of Table 4 presents the rule schemas required to derive implicit negated instantiation
atoms from a KB following the relevance criteria outlined above. We call these schemas the complementary
rule schemas. They are placed on the same rows of the rules for deriving the corresponding implicit positive
atoms, and are the contrapositives of (and as such equivalent to) the original axiom schemes in Table 3,
where negated atoms have been replaced by their corresponding complements. Notice that:

— the complementary rule schemas corresponding to Dom, Ran and the second MetaP would violate the

18

relevance criterion stated above, and threfore they are subsistuted by rule schemas encoding RDom,
RRan and RMetaP, respectively;

— WICut, TotP and TotIP do not have any corresponding rule schema, because the body of each such rule
would contain a negated instantiation atom in which a new name h, hq,...,h,_1 occurs. Such atoms
can never be true, because new names are by definition used only in positive instantiation atoms;

— ClUn, CIBin, CITer and ClCo are tautologies used solely for detecting inconsistencies and have therefore
no corresponding complementary rule schema.

We denote as Pe the set of rules obtained by instantiating the complementary rule schemas, and as P the
datalog program obtained as the union of Pe and P, i.e., P = Pe U ..

We now turn to the last example, in order to show how the rules in P prevent the occurrence of undesired
negative knowledge in the KB. Axiom RDom is instantiated on property P12 as:

P12(z,y) D E5(x) (13)

Atom E21(D) implies E77(D) (via SubC), which implies £2(D) (via DisC) which implies E5(D) (via the
correspondent of SubC). On the other hand, atom P12(D,b) and (13) imply E5(D) and so a contradiction
is generated.

6.2 Computing implicit atoms

The ABox A of a KB can be viewed as an instance of the symbols in the datalog program Pc. By applying
Pr to A, the minimal model A* of Pe that includes A is obtained in an efficient manner, that is using limited
space and time resources. More specifically, A* includes the following types of atoms:

— The explicit instantiation atoms in A and those derived from A by applying the rules in P.. For
instance, assuming that E5(1) is an instantion atom in A, the atom F4(1) is in A*, due to rule (11).
Likewise, assuming E2(2) is in A, E77(2) is in A* due to rule (8).

— The explicit co-reference atoms in A and those derived by applying the rules in Pe. For instance,
assuming that P4(1,2) and P4(1,a) are instantiaton atoms in A, due to rule 12, the atom (2 = a) is
in A*.

— Inconsistent atoms of the form (n; = ns) with n; different from no, resulting in A* from two different
derivation paths:

— from the application of one of the rules having the sentence in their heads, i.e., either rule CIEq or
an instance of one of ClUn, CIBin, ClTer. In this case a common instance is shared by a predicate
symbol and its complement, an obvious inconsistency;

— from the application of one of the rules having a co-reference atom in their heads, i.e., either rules
SymEq, TransEq or an instance of one of FuncP, FunclP. In this case two different standard names,
and possibly some constants, have been associated to the same individual through a functional
property, and this too is an obvious inconsistency.

It suffices to inspect the heads of the rules in P to see that no atom can be in A* other than the foregoing
ones.

If an atom of the third kind above is in A*, then the application of P; to the KB reveals an inconsistency
in the KB. As already noted, Skolemization preserves satisfiability, so the algorithm just outlined offers a
sound and complete method for the checking the consistency of any Lo KB as defined above.

Otherwise, the the application of P transforms a KB K = (1¢, A), into a new KB K* = (T¢, A*) that is an
expansion of K, called the closure of K, including all implicit atoms in K.

The closure of a KB is a natural candidate to compute the answers to the queries stated against the KB, as
it will be shown in the next Section.

19

SubC B(z) < A(x) A(x) + B(x)
Dom Dp(x) + P(z,y) Dp(x) + P(x,y) RDom
Ran Rp(y) + P(x,y) Rp(y) < P(x,y) RRan
5P Q(1,9) « Plw,y) P(r,y) « Q,v)
SymP P(y,z) < P(z,y) P(z,y) < P(y,x)
TransP P(xz,z) + P(z,y), P(y, 2) P(x,y) + P(x,2), Py, 2)
P(y,z) < P(z,2), P(z,y)
MetaP = P(z,y) <+ Pn(x,y, z) Pon(z,y, 2) < P(z,y), E55(z)
E55(z) < Pn(z,y, 2) P(x,y) « Pn(x,y,2) RMetaP
WSCut P(z,y) + Pi(z,21),. .., Po(zn-1,y) Pi(x,21) + P(z,y), Pa(21,22), - - -, Pu(zn-1,9)
Py(21,22) «+ P(z,y), Pi(x, 21), .. ., P.(zn-1,Yy)
Pu(zn-1,y) + P(z,y), Pi(7,21), ..., Pa_1(2n—2, 2n_1)
FuncP (y =v/) « P(z,y), P(z,y') P(z,y') + P(z,y), (y #y')
P(z,y) < P(z,y), (y #y')
FunclP (z =1') + P(z,y), P(2',y) P(2',y) + P(z,y), (z #2")
Pla,y) « Py, (z £)
DisC B(z) «+ A(x) A(x) + B(w)
AMetaP P.n(y,x,2) < Pn(x,y, 2) Pon(z,y,2) < Pn(y,z, 2)
WICut Pi(x,hy) < P(z,y),Si(h1,..., hn-1)

(
Pg(hl,hg) — P(a:,y),Si(hl hn—l)

TotP P(z,h) + A(x),T;(h)
(), Vi(h)

TotlP P(h,z) < B(x),Vi(h
SymEq (y==z) « (z=y) (z#y) < (y#2)
TransEq (2 =2) < (z=1y),(y =2) (x#y) + (x#2),(y=72)
(y#2) « (@#2),(z=y)
LLCIL C(y) « (z =y),C(z) (z #y) + C(z),C(y)
C(z) «+ Cly), (z =y)
LLPrl P(y1,92) < (z1 = y1), (x1 # Y1) < (w2 = y2), P21 1172),?(@/1,?/2)
(z2 = y2), P(z1,22) (z2 # y2) < (21 = y1), P21, 22), P(y1,y2)
P(xy,22) « (x1=11), (€2 = 42), P(y1,2)
LLMP1 Pn(y) « (21 = y1), (32 = y2), (21 # y1) « (w2 = y2), (w3 = y3), Pn(y)
(z3 = y3), Pn(T) (z2 # y2) < (21 = 11), (x5 = y3), P.n(¥)
(z3 # y3) < (z1 = y1), (x2 = y2), Pn(y)
Pa(Z) « (x1.=y1), (22 = y2), (3 = y3), Pn(g)
ClUn (n1 =ng) «+ C(z),C(x)
CIBin (n; =ng) + P(z,y), P(x,y)
ClTer (ny = ny) < Pn(z,y, 2), Pn(x,y, 2)
ClCo (ni=mn2)+ (x=y),(x#y
Cly) « (z#y),Cz) RCo

Table 4: The rule schemas and the co-reference rules of Pc

20

6.3 Query answering
The datalog program Pg cannot be used to compute answers to queries stated against a L¢ KB, due to
the fact that query answering is defined in terms of logical implication and Skolemization does not preserve

logical implication. On the other hand, we cannot reduce query answering to satisfiability since we would
have existential quantifiers in the negation of universally quantifies queries.

A Property Quantification Tables

B Propositions

Proposition 1 For each model w of T¢ there exists a unique extension of w that is a model of T}.
Proof: Let w' be as follows:

1. w'(n) = w(n) for each standard name n;

w'(a)

w(a) for each constant a;

w'(@)

w(a) for each primitive atom a in L¢;

for each primitve atom B(n), w'[B(n)] =0 if w[B(n)] =1 and w'[B(n)] = 1 if w[B(n)] = 0;
for each primitve atom P.n(ny,na,n3), w'[Pn(ni,ne,n3)] = 0 if w[P.n(ny,na,n3)] =1 and

w'[Pn(ny,na,n3)] =1 if w[P.n(ny,na,ng)] = 0.

SR

w' is clearly unique, and it is an extension of w, since the two world states concide on the symbols in Lc. Now
suppose w is a model of Tc. Then it satisfies each DisC aziom A(x) D —B(x), therefore for each standard

name n, if w[A(n)] =1 then w[B(n)] = 0. This implies that w'[A(n)] = 1, w'[B(n)] = 0 and w'[B(n)] = 1,
therefore w' satisfies A(x) D B(z). In addition, w' does not satisfy B(n) A B(n), hence no contradiction
is generated by aziom B(n) A B(n) D (n1 = n2). A very similar argument applies to the AMetaP azioms,

leading to the conclusion that w' is a model of Tf. O

Based on the last Proposition, we introduce a function - that maps every world state w of L¢ into its unique
extension w¥ as defined by the previous Proposition.

Next, we prove that the new predicate symbols introduced for capturing negation are indeed doing so.
Given a C KB K = (T¢, Ar, Ac), let the extension of K, K*, be the triple K+ = (T, A, Ac), in which

the set of axioms T¢ is replaced by TC+ , while instantation and co-reference atoms are the same. This means
that in an extension, the complementary predicate symbols are not used to make assertions.

Proposition 2 For every C knowledge base K and terms t, ty, ta, and t3 in Lc,

1. K |=-0(t) iff Kt |= C(t), for every class predicate symbol C.

2. K |= ~Pn(ti,ta, t3) iff KT |= Pn(ty, ta, t3), for every meta-property predicate symbols P.n.

Proof: We carry out the proof only for the first part and for standard names, i.e., t = n. The remaining
cases are proved in a very similar way.

(=) If K is inconsistent, then there is no world state w that satisfies it. But then, there is no extension
wt, therefore KT is inconsistent too, and the Proposition follows. Now suppose K is consistent, and let w
be any model of it. By the previous Proposition, wT satisfies TC+; moreover, wT is the same as w on the L¢
symbols, which are the only ones occurring in Ar and Ac. We conclude that w™ satisfies K. By hypothesis,
w | —~C(n), that is w[C(n)] = 0. By definition, w*[C(n) = 1,] therefore w* = C(n). The Proposition
follows.

21

many to many

(0,n:0,n)

one to many

(0,n:0,1)

many to one

(0,1:0,n)

many to many,
necessary

(1,n:0,n)

one to many,
necessary

(1,n:0,1)

many to one,
necessary

(1,1:0,n)

one to many,
dependent
(0,n:1,1)

one to many,
necessary,
dependent
(1,n:1,1)

many to one,
necessary,
dependent
(1,1:1,n)

one to one
(1,1:1,1)

Unconstrained: An individual domain instance and range instance of this property can have
zero, one or more instances of this property. In other words, this property is optional and
repeatable for its domain and range.

An individual domain instance of this property can have zero, one or more instances of this
property, but an individual range instance cannot be referenced by more than one instance
of this property. In other words, this property is optional for its domain and range, but
repeatable for its domain only. In some contexts this situation is called a “fan-out”.

An individual domain instance of this property can have zero or one instance of this property,
but an individual range instance can be referenced by zero, one or more instances of this
property. In other words, this property is optional for its domain and range, but repeatable
for its range only. In some contexts this situation is called a “fan-in”.

An individual domain instance of this property can have one or more instances of this
property, but an individual range instance can have zero, one or more instances of this
property. In other words, this property is necessary and repeatable for its domain, and
optional and repeatable for its range.

An individual domain instance of this property can have one or more instances of this
property, but an individual range instance cannot be referenced by more than one instance
of this property. In other words, this property is necessary and repeatable for its domain,
and optional but not repeatable for its range. In some contexts this situation is called a
“fan-out”.

An individual domain instance of this property must have exactly one instance of this
property, but an individual range instance can be referenced by zero, one or more instances
of this property. In other words, this property is necessary and not repeatable for its domain,
and optional and repeatable for its range. In some contexts this situation is called a “fan-in”.

An individual domain instance of this property can have zero, one or more instances of
this property, but an individual range instance must be referenced by exactly one instance
of this property. In other words, this property is optional and repeatable for its domain,
but necessary and not repeatable for its range. In some contexts this situation is called a
“fan-out”.

An individual domain instance of this property can have one or more instances of this
property, but an individual range instance must be referenced by exactly one instance of
this property. In other words, this property is necessary and repeatable for its domain,
and necessary but not repeatable for its range. In some contexts this situation is called a
“fan-out”.

An individual domain instance of this property must have exactly one instance of this
property, but an individual range instance can be referenced by one or more instances of
this property. In other words, this property is necessary and not repeatable for its domain,
and necessary and repeatable for its range. In some contexts this situation is called a
“fan-in”.

An individual domain instance and range instance of this property must have exactly one
instance of this property. In other words, this property is necessary and not repeatable for
its domain and for its range.

Table 5: Property Quantifiers in the CRM specification

22

many to many
(0,n:0,n)

one to many
(0,n:0,1)

many to one
(0,1:0,n)

many to many,
necessary
(1,n:0,n)

one to many,
necessary

(1,n:0,1)

many to one,
necessary
(1,1:0,n)

one to many,
dependent
(0,n:1,1)

one to many,
necessary,
dependent
(1,n:1,1)

many to one,
necessary,
dependent
(1,1:1,n)

one to one
(1,1:1,1)

Unconstrained: An individual domain instance and range instance of this property can have
zero, one or more instances of this property. — No axiom is required (Naz for short)

An individual domain instance of this property can have zero, one or more instances of this
property, — Nazx

but an individual range instance cannot be referenced by more than one instance of this
property. — Inverse functional

An individual domain instance of this property can have zero or one instance of this property,
— Functional

but an individual range instance can be referenced by zero, one or more instances of this
property. — Naz

An individual domain instance of this property can have one or more (must have at least
one?) instances of this property, — Total

but an individual range instance can have zero, one or more instances of this property. —>
Nax

An individual domain instance of this property can have one or more (must have at least
one?) instances of this property, — Total

but an individual range instance cannot be referenced by more than one instance of this
property. — Inverse functional

An individual domain instance of this property must have exactly one instance of this
property, — Total Functional

but an individual range instance can be referenced by zero, one or more instances of this
property. — Nazx

An individual domain instance of this property can have zero, one or more instances of this
property, — Nax

but an individual range instance must be referenced by exactly one instance of this property.
— Inverse Total Functional

An individual domain instance of this property can have one or more instances of this
property, — Total

but an individual range instance must be referenced by exactly one instance of this property.
— Inverse Total Functional

An individual domain instance of this property must have exactly one instance of this
property, — Total Functional

but an individual range instance can be referenced by one or more instances of this property.
— Inverse Total

An individual domain instance and range instance of this property must have exactly one
instance of this property. — Total Functional — Inverse Total Functional

Table 6: Break-down of the Property Quantifiers definitions

23

(+) Suppose KT is inconsistent, then by the counterpositive of the previous Proposition, also K is incon-
sistent, and the Proposition follows. Now suppose KT is consistent, and let wT be any model of it. By
construction w is a model of Tc, therefore wt is also a model of K. By hypothesis, w™ = C(n), that is
wT[C(n)] = 1. By definition, wt[C(n) = 0,] therefore w[C(n) = 0] that is w = —C(n). The Proposition
follows.

C Managing co-reference

This algorthm is useless because we compute all consequences of co-reference statements by datalog. Nev-
ertheless, it may be used in case one decides to manage co-reference statements (supposedly many in any
realistic KB) in an ad-hoc way. Whence the title.

Preparation In the preparation stage, the CCA computes the maximal sets of co-refering terms, based
on the co-reference literals in the KB. Let the co-reference graph G of K be the directed di-graph having
an arc (t1,ts) iff the atom (¢1 = o) is in Ag. Let Gi,..., Gk be the components of Gg. Clearly, k > 1.
By applying the Reflexivity, Symmetry and Transitivity axioms to G, a new graph G obtains that is the
reflexive, symmetric and transitive closure of the original graph. It is not difficult to see that the components
of G are the reflexive, symmetric and transitive closure of G1,...,Gx, G7,...,G}, and that each G is a
clique. For simplicity, we will equate each clique G} with the set of its nodes. Then, each G is a maximal
set of co-refering terms.

Checking In the checking stage, the CCA checks whether the KB is consistent by using the cliques
produced in the preparation stage. To this end, for each clique G} :

— The algorithm checks whether G} contains at least two standard names n; and ng. If this is the
case, the KB implies an atom of the form (n; = ny), where ny is different from no. This is a type-1
inconsistency, so the algorithm outputs “yes” and terminates. Otherwise,

— The algorithm checks whether G} contains a pair of terms ¢; and ¢2 such that (¢; # t2) is in Ac. If this
is the case, the KB contains a type-2 inconsistency, where the KB implies the positive side (¢; = t2)
and the co-reference ABox contains the negative side. Also in this case the algorithm outputs “yes”
and terminates.

If all cliques are examined without detecting an inconsistency, the CCA outputs “no” and terminates.

We note that CCA does not use the Leibnitz Law axiom. This is due to the fact that this axiom derives
new instantiation atoms and none of these atoms may produce an inconsistency, since negation can only
occur in co-reference literals. To illustrate, consider a KB K = (T¢, A1, Ac) such that F4(a) € A; and
(1 = a) € Ac. By applying the Leibnitz Law axiom, we derive the new instantiation atom F4(1), but this
derivation may not lead to any inconsistency, because in no circumstance they KB may contain or imply a
negated instantiation atom. However, we also note that E4(1) brings more knowledge than F4(a), because
it contains a standard name and standard names identify individuals, whereas constants just describe them.
In this sense, a KB with more atoms of the former kind is preferable to a logically equivalent KB with more
atoms of the latter kind.

Based on this consideration, we conclude this Section by presenting an algorithm, which we call the noise
reduction algorithm (NRA for short), for the transformation of a KB into an equivalent one with the same
or a smaller number of constants. The NRA just applies the Leibnitz Law axiom to the input KB, whence
its correctness.

C.1 Noise reduction

The NRA algorithm takes as input a consistent KB K = (T¢, A, Ac) and the set of cliques G7,...,Gj as
above; the algorithm works in two stages: the re-writing and the reduction stage.

24

Re-writing In the re-writing stage, the NRA checks whether a preferable (in the sense described above)
KB can be derived from the given one. To this end, for each clique G :

— The algorithm checks whether G contains one standard name n only. In this case, in every model of
the KB the constants in the clique denote the same individual denoted by n, so we can make the KB
more preferable by applying the Leibnitz Law axiom on the substitution of equals, and replace by n
every occurrence of a constant ¢ in the clique, in every sentence « of K. As a result of the replacement,
an equivalent sentence af, obtains that is preferable to « since it has a standard name in place of a
constant.

— The algorithm checks whether G} contains no standard name. In this case, we can pick any constant
¢ in the clique and use it as a replacement of all the other constants in the clique, for the same reasons
as in the previous case.

The result of the transformation phase is a KB equivalent to the input KB, with a number of constants that
is no larger than the number of constants in the input KB.

Reduction In the reduction stage, the NRA reduces the set of co-reference literals in the co-reference
ABox of the KB resulting from the previous stage. The basic consideration behind this reduction, is that
a co-reference statement containing a constant that does not occur anywhere else in the KB is redundant,
in that it brings no information to the KB. Formally, this can be proved by showing that the KB with such
literals is equivalent to (i.e., has the same models as) the KB without them. Which are then the redundant
co-reference literals?

It is not difficult to see that after the execution of the re-writing stage, only one term for each clique Gy is
left in the KB. Now, in every positive co-reference literal only terms from the same clique occur, therefore
in every such statement at least one term has been replaced during the re-writing stage. So all positive
co-reference literals are redundant.

On the contrary, in a consistent KB every negated co-reference literal relates terms from two different cliques,
otherwise a type-2 inconsistency arises. Each of the terms in a negated co-reference statement may be the
result of one or more replacements performed in the re-writing stage, yet the two terms belong to different
cliques. As such, no negated co-reference literal is redundant.

Based on these considerations, the reduction stage of the NRA removes all positive co-reference literals from
the co-reference ABox of the KB produced by the previous stage. After this removal, the NRA terminates.

References

[1] S. Abitebul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995. ISBN: 0-201-
53771-0.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2nd edition, 2003.

[3] Dan Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF schema. W3C Recom-
mendation, WWW Consortium, February 2004. http://www.w3.org/TR/rdf-schema/.

[4] W3C OWL Working Group. Owl 2 web ontology language document overview (second edition). W3c
recommendation, W3C, December 2012. http://www.w3.org/TR/owl2-overview/.

[5] Patrick Hayes. RDF Semantics. W3C Recommendation, WWW Consortium, February 2004. http:
//www.w3.org/TR/rdf-mt/.

[6] Hector J. Levesque and Gerhard Lakemeyer. The Logic of Knowledge Bases. The MIT Press, 2001.

25

[7] John Wylie Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.

[8] Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau. OWL 2 Web Ontology Language
direct semantics (second edition). Technical report, W3C Recommendation, 11 December 2012. http:
//www.w3.org/TR/owl2-direct-semantics/.

[9] Allen Newell. The knowledge level. Artificial Intelligence, 18(1):87-127, 1982.

[10] Raymond Reiter. Towards a logical reconstruction of relational database theory. In Michael L. Brodie,
John Mylopoulos, and Joachim W. Schmidt, editors, On Conceptual Modelling, pages 191-233. Springer
Verlag, New York, NY, 1984.

[11] ICOM/CIDOC CRM Special Interest Group. Definition of the CIDOC Conceptual Reference Model
version 5.1.2. Technical report, International Council of Museums, October 2013.

26

