>, Delving

open-source solutions for cultural heritage

Mapping Data to CIDOC-CRM

Rotterdam

2013-06-06

contact: Gerald de Jong
email: gerald@delving.eu

The goal of this document is to contribute to the refinement of a universal file format for the mapping of
data to the CIDOC Conceptual Reference Model using RDF. This XML-based file format was initiated at
FORTH around 2006 and has seen the development of a partial implementation prototype for
transforming LIDO documents into RDF.

The XML file is intended to specify all of the transformations that are required and an accompanying
piece of Java code implements policy recommendations for generating URI values to represent the CRM
entities and properties.

Much thought has gone into the design of the XML mapping file format but the associated
implementation is not suitable for a production environment, and also not entirely generic in several
ways. We believe that the XML mapping file format should undergo a few improvements, and that there
is a great need for a proper production implementation for executing any mapping built in this format.

In the following pages we analyze the current XML format, as well as the associated prototype
implementation. We will make recommendations that will enhance readability and accuracy of the
mapping file, ensure that URI generation is generic, and standardize the retrieval of source data
elements.

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

Delving

open-source solutions for cultural heritage

Contents:

Current Mapping File Format
Basic XML Structure
Extensions
Conditionals
URI Generation

Suggested Changes
Basic XML Structure: Entity and Property
Extensions: Additional Node
Extensions: Internal Node
Conditionals
URI Generation
Defining URI Functions
Querying the Source

Conclusions

Implementation
What is next?

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.9xyt1rsto5fz
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.nuaf77kykd
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.mza47q6sj7ea
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.5rwve31fcllc
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.tu54ikvz7num
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.ehphf8nf5wpv
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.fxm3bengz3ei
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.c0dgyt346btt
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.pnnsjvprcst
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.gf8ouovn8ze0
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.badtsl1gpget
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.nijdwrr46lb
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.9olfj0c7hm6m
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.oo7g0bdv3ocj
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.t4eadn3zz9oq
https://docs.google.com/a/delving.eu/document/d/stqIUPj31skG2FGIb3osX5A/headless/print#heading=h.u77pcn883fle

M Delving

open-source solutions for cultural heritage

Current Mapping File Format

There are some examples of mapping files available, and the original documentation describes a
previous incarnation of the format, so the following analysis is based on those sources. The most
elaborate and informative example was for transforming from LIDO 0.7.

Basic XML Structure

The current format describes the transformation as a series of map components each containing
mappings for mapping the domain to an entity, and then the range as well together with the intervening
predicate or property describing the path from domain to range.

<mapping>
<map>

<domain_map/>

<link_map>
<range_map/>
<path_map/>

</link_map>

<link_map/>

</map>
<map/>

</mapping>

Extensions

Since there are several variations required of the straightforward one-to-one mapping, extensions have
been made to make the contents of range_map and path_map so that extra additions can be made
during the transformations.

<range_map> <path_map>
<src_range> <src_path/>
<target_range> <target_path>
<add_link/> <int_link/>
<add_entity/> <int_entity/>

</range_map> <int_link/>

</target_path>
</path_map>

Beyond the above extensions there has been an effort to document and standardize the practice of
generating URI values, and deal with the conditional creation of output triples.

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

>, Delving

open-source solutions for cultural heritage

Conditionals

The original documentation suggests that a full array of boolean conditional statements which can be
combined into expressions. The component values reflect either presence/absence of a value, or
whether a value is equal to a given constant. The only example found so far shows the latter:

<target_path>
<target_path_condition>
<if>
<path>../../lido:roleInEvent/lido:term/text()</path>
<has_value>produced_by</has_value>
<[if>
</target_path_condition>
<target_path>

The intention was that there be conditions associated with all six possibilities:

src_domain src_range src_path

target_domain target_range target_path

The naming convention is like the example above, appending _condition to the name of the context tag.

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

M Delving

open-source solutions for cultural heritage

URI Generation

A Java class called URIPolicies has a number of methods which are to be fed parameters containing
data fetched from the source and from the mapping file, and return the best possible URI value.

String uriConceptual(String className, String thing)
String appellationURI(String className, String subjUri, String appellation)

Calls to these methods are then specified in the XML file within a uri_rules section which can appear
alongside any of the source-to-target mapping sections.

<uri_rules>
<uri_function>
<name>uriForActors</name>
<arguments>@lido:source</arguments>
<arguments>text()</arguments>
<arguments>../lido:legalBodyName/lido:appellationValue/text()</arguments>
<arguments>//lido:lido/nothing</arguments>
</uri_function>
</uri_rules>

String uriForActors(String className, String authority, String id, String name, String birthDate)

The reason why these URI generators require so many arguments is because the resulting URIs must
be repeatable given the same source information. The raw materials for these functions are fetched
using XPath, at least in the example above.

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

M Delving

open-source solutions for cultural heritage

Suggested Changes

Until now there have only been a few files created in the format described above (although the one for
LIDO 0.7 is large in itself, consisting of more than two-thousand lines!). We are at a point now where we
have the opportunity to modify the format since the few existing files can easily be restructured.

When making changes at this juncture, it can be useful to make a clean break from the current

conventions so that there is never confusion between new files and ones that have accumulated during
the development and prototyping which led to the current format. But the primary reasons for the
changes is to improve readability and allow for a straightforward means to automatically write as well as
read the mapping files. It is the read/write combination that is required for this format to be the basis of
software tools.

Our proposals here will therefore include changing the names of tags (easy find-replace in older
examples) and some of the structure (requires manual adjustment). The philosophy behind any

changes will be the DRY Principle (Don’t Repeat Yourself). Defaults are chosen such that a great deal

of redundancy is removed. In fact, the LIDO mapping file used here was reduced from more than 2500
lines to just over 1600 which represents a reduction of one third!

We should also establish a clear version strategy for moving our group’s mapping file format forward, so
that there is a clear roadmap for those making implementations now and in the future. Software for
reading and writing can then be made backwards-compatible and used as a tool for managing version
upgrades to existing mappings.

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

M Delving

open-source solutions for cultural heritage

Basic XML Structure: Entity and Property

The basic structure is of course essentially correct, except some DRY renaming would make it more
easily human-readable, and a clear indication of the contents of the different sections using the entity

and property tags has a number of advantages.

<mapping>
<map>

<domain_map/>

<link_map>
<range_map/>
<path_map/>

</link_map>

<link_map/>

</map>
<map/>

</mapping>

<mappings version="0.9.0">
<mapping>
<domain>
<source/>
<entity/>
</domain>
<link>
<path>
<source/>
<property/>
</path>
<range>
<source/>
<entity/>
</range>
</link>
<link/>

</mapping>
<mapping/>

</mappings>

The purpose of these mappings is to create triples of the form entity-property-entity where both are
named according to the CIDOC-CRM (with their associated E??_Name and P??_Name tags), so it

makes sense to simply given them these names.

The clear delineation of entity has the added advantage that it can be used to encapsulate the URI
generation mechanism. Likewise, property can capture the conditional mechanism. Both of these

which will be covered in a later sections.

A version number is added so that compatibility with the software which executes the mapping can be

ensured.

Delving B.V.
The Netherlands

Tel: +31(0)629339805
Email: info@delving.eu

M Delving

open-source solutions for cultural heritage

Extensions: Additional Node

In the design of the extension structure, decisions were made which make automatic interpretation of
the XML more difficult than it needs to be. The extension to create additional nodes is intended to turn
domain-path-range to entity-property-entity-Property-Entity (capitalized are new), so the following
structural change is suggested to make this perfectly clear.

<range_map> <range>
<src_range/> <source/>
<target_range/> <entity/>
<add_link/> <additional_node>
<add_entity/> <property/>
</range_map> <entity/>
</additional_node>
</range>

The suggested additional_node section here is clearly delineated and its content resembles link so it
adds symmetry. Also, since it is a clearly delineated section beside source and entity, it is easier for
the interpreter of the XML to see as an optional whole section.

In the original, add_link was used to give a CRM property name like P2_has_type, which prompts
renaming to property in this context.

Extensions: Internal Node

When a domain-path-range is to result in two new ftriples with an internal node entity inserted in
between. So this maps domain-path-range to entity-property-Entity-Property-entity (capitalized are
new), an extra section is added to the target.

</target_path>
</path_map>

<path_map> <path>
<src_path/> <source/>
<target_path> <property/>
<int_link/> <internal_node>
<int_entity/> <entity/>
<int_link/> <property/>

</internal_node>
</path>

Similar to the case of an additional node, the internal_node section is delineated from the original target

path in a separate internal_node section. This makes it easier for the interpreter in the same way,

with clearly optional pair of items, this time in the opposite order.

Delving B.V.
The Netherlands

Tel: +31(0)629339805
Email: info@delving.eu

M Delving

open-source solutions for cultural heritage

Conditionals

In the original specifications there was a description of the conditional creation of triples guided by a full
boolean expression mechanism. This means that any combination of and/or/not statements can be
constructed to decide whether a link should be made or not.

The core condition is either a determination of presence/absence or a comparison of a fetched value
with a given constant value. The structure so far used for this in practice is very limited and somewhat
awkward since it consists only (so far) of has_value determinations in an if construction. The current

prototype implementation does not handle all expressions, only these.

Deciding whether to make a link amounts to deciding whether the domain entity should be attributed a
given property which points to another entity. It is in the property or “path” connecting the entities that
the conditional can then be placed.

It would make sense to put the condition in the position between the property tags as shown below, and
to capture the base component boolean in a simple exists tag which optionally contains a value
attribute to which the result is to be compared.

<target_path_condition> <property tag="P?">
<if> <exists value="...">...</exists>
<path>...</path> </property>
<has_value>...</has_value>
<[if> <property tag="P?">
</target_path_condition> <and>
<exists>...</exists>
<src_path_condition> <exists value="...”>...</exists>
<if/> </and>
</src_path_condition> </property>
<src_domain_condition/> <property tag="P?">
<or>
<target_domain_condition/> <exists>...</exists>
<and>
<src_range_condition/> <exists value="...”>...</exists>
<not>
<target_range_condition/> <exists>...</exists>
</not>
</and>
</or>
</property>

Further, if the exists tag is considered to be a function returning a boolean response, it can be
combined easily with tags for the boolean operations when they are structured properly. The tags and,
or, and not also then become functions that return true or false and do so by combining the values of
their subtag entries.

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

M Delving

open-source solutions for cultural heritage 1 0

URI Generation

The prototype implementation does not currently suggest the best way forward for properly defining and
executing the URI policies, but with some small modifications we can be sure that the process will be
future-safe.

It is only entities which require the generation of URI values, so rather than have an unattached section
in the mapping XML file it makes sense to encapsulate the URI generation into the entity tag.

<range_map>
<src_range/>
<target_range/>

<range>
<source/>
<entity tag="E?">

<uri_rules> <uri_function name="...">
<uri_function> <arg name="...”>....</arg>
<name/> <arg name="...”>....</arg>
<arguments/>
<arguments/> </uri_function>
</entity>
</uri_function> </range>
</uri_rules>

</range_map>

There are two other changes to the actual structure of the URI method call which would greatly
contribute to the accuracy and readability of the result. First if all the name of the function is isolated
as an attribute so that the content can be clearly just a list of arguments. Secondly, the arguments are
named rather than just being a sequence of un anonymous values. Recall that we are calling methods
like this one:

String uriForActors(String className, String authority, String id, String name, String birthDate)

Clearly naming the parameters will avoid errors that would have otherwise arisen, and they would
certainly no longer require nonsensical arguments in order to signal the absence of a value.

<uri_function> <uri_function name="Actor">
<name>uriForActors</name> <arg name="authority”>....</arg>
<arguments>...</arguments> <arg name="identifier’>....</arg>
<arguments>...</arguments> <arg name="name”>....</arg>
<arguments>....</arguments> </uri_function>
<arguments>//lido:lido/nothing</arguments>
</uri_function>

The functions themselves should then be set up to fetch their named parameters as XPath expressions
in the source explicitly and they must have clear strategies in place for when values happen to be
absent. When there is only one argument, the name can be omitted since there is no ambiguity.

Some functions require some extra information which is not available from the source document, such

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

>, Delving

open-source solutions for cultural heritage

11

as the entityTag (which entity is being created) and the domainURI (which URI was used for domain in
this set of links). Since functions will be fetching names values from their “environment”, they can fetch
these just as well. The values can be made available by default so that any URI function can fetch
them.

Also, since many of the URI function uses only fetchable values and one argument that is the XPath
statement text(), this can be considered the default scenario and the argument omitted entirely. Taking
it step by step, we could imagine this evolution:

<uri_function name="Literal">
<arg name="note">text()</arg>
</uri_function>

<uri_function name="Literal">
<arg>text()</arg>
</uri_function>

<uri_function name="Literal"/>

These simplifications, based on properly chosen defaults, make the result much more readable and
therefore amenable to being used as a document for discussion.

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

M Delving

open-source solutions for cultural heritage

12

Defining URI Functions

In the prototype code, a Java class is used to define the URI functions and they are called using the
Java Reflection API. The disadvantage of this approach is that it explicitly depends on the Java
programming language, and the parameters cannot be assigned by name.

Also, the naming conventions among these methods is not entirely consistent with different orderings
like uriConceptual and appellationURI, which should be rectified by using a well-considered and
perfectly consistent convention. Each method should also be ouftfitted with a version number such that
there is never any ambiguity about which function is being executed.

The level of complexity in the URI methods is really minimal, since they simply attempt to build a URI

string from a number of identifier strings as raw materials. When certain parameters are missing, they
can make different choices about the URI they generate, and when not enough information is present to
create a useful URI, they default to generating a generic unique identifier or UUID.

As the prototype shows, many of the defined functions have parameters which are not used at all in the
body of the function, so they are irrelevant but included for perceived consistency. In reality the
prototype did not achieve a generic implementation, so these workarounds did not accomplish the
intended goal.

A better approach than a Java class for these definitions would be to explicitly define and publish
function definitions in pseudo-code that anyone can understand, not only programmers. This way any
programming language can be used as an implementation. Each pseudo-code function should be
accompanied by an exhaustive series of examples showing input and output so that different
implementations can be verified.

For example, the following method is not very understandable, and certainly not for a non-programmer:

public String appellationURI(String className, String subjUri, String appellation) {

tem = reading("appellationURI");
String uri = tem.get(0);
if (subjUri == null || appellation.equals(")) {

return uuid("™);
}else {

if (IclassName.equals("Appellation")) {

for (inti=1;i < tem.size(); i++) {
uri = uri + tem.get(i);

}
uri = uri + subjUri + "@" + appellation;
}else {
uri = uri + "Appellation/" + subjUri + "@" + appellation;
}
return encode(uri);
}
}
Delving B.V. Tel: +31(0)629339805

The Netherlands Email: info@delving.eu

M Delving

open-source solutions for cultural heritage

13

The actual nature of the pseudo-code which would explain what the functions do in a way that everyone
can understand is not handled here, but it should enable building these functions in any programming
language. There are only several handfuls of these functions, so with a clear one-page official
description of each, which includes an exhaustive set of examples, implementation could be made easy.

Querying the Source

In the original documentation about this mapping format from 2006 there seemed to be an indication that
that the source was expected to be data directly from the tables of a relational database. On the other
hand, the later introduction of URI functions were only ever based on querying using XPath, assuming
that the source is XML.

We propose that this be resolved, if it hasn’t been already, to work solely on the basis of XPath and
XML, since the reasons are clear. Assuming W3C standards is much more future-safe than building
any dependency on a particular relational database vendor or SQL dialect. Also, it makes sense to
consider any path from a relational database to be a pipeline in order to separate the concerns of
complete data extraction and actual mapping to CRM ftriples. First enable dumping of database content
to XML (if it is not stored in XML, which is becoming more common) and then execute the mapping file
to generate triples.

In the event that a decision is made later on to generate triples directly from the tables of a relational
database, we can simply expand the definition of how the source tag is interpreted. Now it is assumed
to be an XPath expression locating segments in a source XML document, which is a simplification that
the pipeline approach affords us. The source tag could perhaps be elaborated with attributes or sub-tags
that describe other kinds of queries.

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

M Delving

open-source solutions for cultural heritage

14

Conclusions

We have analyzed the existing mapping format and made suggestions for improving its readability as
well as the ease with which it can be written as well as read using software. We have also argued that a
clear commitment be made to use XML as source format so that standard XPath can be used for
querying, and that URI functions be officially described in a pseudo-code language and accompanied by
a comprehensive set of example input and output values.

Implementation

Initial work has already been done to enable software to work with the suggested format, and it has been
tested on the elaborate mapping file built for LIDO. The work initially done to build the existing mapping
file was preserved in this process, and the file in the new format can be viewed online
(http://goo.gl/FimE3) and compared to the original (http://goo.gl/Xnf4V).

The current code reads the new format in a way that makes it construct a useful tree of typed objects in
memory, rather than a generic Document Object Model. The object tree (http://goo.gl/yv7K5) will be
used as a kind of pre-configured machine, which itself becomes the main component of the mapping
engine. This was the technique employed for code generation in the current Delving SIP-Creator.

The values of entity and property tag attributes are controlled by enumeration classes (http://goo.gl/ulXki
and http://goo.gl/mHUjA) which were already useful in catching numerous inconsistencies in the existing
mapping file such as:

<target_domain>39_ Actor</target_domain> <int_1link>P12B_was_present_at</int_link>

<int_entity>E39_Actor</int_entity> <property tag="P12i_was_present_at"/>

The associated unit test locks down the reading and writing functionality to ensure that it is completely
accurate by comparing the written result to the original.

@Test
public void lidoToCRM() throws IOException, ParserConfigurationException, SAXException {
URL mappingFile = getClass().getResource("/rdf/lido-to-crm.xml");
MapToCRM.Mappings mappings = MapToCRM.readMappings(mappingFile.openStream());
String xml = MapToCRM.toString(mappings);
String[] fresh = xml.split("\n");
List<String> original = IOUtils.readLines(mappingFile.openStream());
intindex = 0;
for (String originalLine : original) {
originalLine = originalLine.trim();
String freshLine = fresh[index].trim();
Assert.assertEquals("Line " + index, originalLine, freshLine);
index++;
}
}

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

http://goo.gl/FjmE3
http://goo.gl/Xnf4V
http://goo.gl/yv7K5
http://goo.gl/ulXki
http://goo.gl/mHUjA

M Delving

open-source solutions for cultural heritage

15

With verified reading/writing in place, we have the foundation for creating a software tool for editing as
well as executing the mapping described in the XML file.

What is next?

The next steps will be to build up the code of the object tree such that it takes an input document and
generates the triples that the mapping describes. Once the mapping can actually be executed, the
remaining challenge of building a user-friendly graphic interface begins.

CRM

000000

LAB

The interaction design of this interface should be worked out by those experienced with building
mappings, together with those building the code such that the two points of view are merged.

Delving B.V. Tel: +31(0)629339805
The Netherlands Email: info@delving.eu

