
Formalizing the CRM

Carlo Meghini and Martin Doerr

1 Introduction

This document presents a formalization of the CIDOC CRM in first-order logic. The resulting first-order
theory, that we call CRM, captures all aspects of the CRM that are expressed in the specification.

For implementation purposes, the CRM is subsequently expressed as an OWL ontology that we call CRM.
We use the term “OWL” as a synonym of “OWL 2”.

As a notational convention,

• CRM terms are written in Sans Serif, e.g. E1 CRM Entity

• first-order symbols in italics, e.g. E1 CRM Entity

• OWL entities in teletype style, e.g. E1 CRM Entity

2 Translation of class specifications

Table 1 shows the translation in first-order logic of the specification of a CRM class. As the first row in
Table 1 indicates, a class is modelled as a unary predicate symbol, given by the first part of the class name,
that is E2 represents class E2 Temporal Entity. In the first-order sentences in Table 1, as well as in the ones
in the rest of this document, variables are universally quantified unless differently stated.

Translation of sub- or super-class statements is obvious. Class disjointness is discussed below. All other
aspects of class specification involve properties, and are discussed in Section 3.

2.1 Class disjointness

Disjointness statements capture incompatibility between classes or properties, making inconsistent any KB
in which such classes or properties share a common instance.

CRM Specification Translation into first-order logic

Class En c-name Unary Predicate En

A Superclass of B B(x) ⊃ A(x)

A Subclass of B A(x) ⊃ B(x)

Table 1: Translation of class specification into first-order logic

1

In order to capture disjointness between classes A and B, we use the axiom:

A(x) ⊃ ¬B(x)

which is equivalent to:
B(x) ⊃ ¬A(x)

and is weaker than:
A(x) ≡ ¬B(x)

For every interpretation, the last axiom forces every individual in the domain of the interpretation to be
either in the extension of A or in the extension of B. The weaker form, instead, allows individuals to be
neither in the extension of A nor in the extension of B, while keeping these extensions disjoint. We note
that the weaker form is also the interpretation of class disjointness in OWL [1].

The CRM makes the following class disjointness statements1:

• E2 Temporal Entity is disjoint from E77 Persistent Item.

• E18 Physical Thing is disjoint from E28 Conceptual Object.

So we have the following two axioms in CRM :

E2(x) ⊃ ¬E77(x)

E18(x) ⊃ ¬E28(x)

Since disjointness axioms propagate down the IsA hierarchy, these two axioms sanction the disjointness of
many classes. In particular, due to the fact that E2 Temporal Entity and E77 Persistent Item are very high in
the CRM class hierarchy, the first axiom creates a wide dichotomy in the class set of the CRM.

3 Translation of property specifications

Table 2 shows the translation in first-order logic of the CRM property specification. As it can be seen from
Table 2:

• Property are represented as binary predicate symbols, given by the first part of the corresponding
property names; that is, P16 represents P16 used specific object (was used for).

• Domain, range, sub- and super-property statements are translated in the obvious way.

• The translation of all other aspects is illustrated in a separate section below.

3.1 Meta-Properties

A meta-property is a property whose domain is a property (hence the name). That is, any instance of a
property associates an instance of the domain property with a value in the range of the meta-property.

Meta-properties are named by adding a progressive number to their domain properties. For instance2,
“The P3.1 has type property of P3 has note allows differentiation of specific notes, e.g. “construction”,
“decoration” etc. An item may have many notes, but a note is attached to a specific item”.

1pag. xv
2pag. 98

2

CRM Specification Translation into first-order logic

Property Pn p-name Binary Predicate Pn

P has Domain C P (x, y) ⊃ C(x)

P has Range D P (x, y) ⊃ D(y)

P is a Superproperty of Q Q(x, y) ⊃ P (x, y)

P is a Subproperty of Q P (x, y) ⊃ Q(x, y)

Quantification see Section 3.5

P has Meta-Property P.n: C P.n(x, y, z) ⊃ [P (x, y) ∧ C(z)]

P is Symmetric P (x, y) ⊃ P (y, x)
P has Asymmetric
Meta-Property P.n: C

P.n(x, y, z) ⊃ [P (x, y) ∧ ¬P.n(y, x, z) ∧ C(z)]

P is Transitive [P (x, y) ∧ P (y, z)] ⊃ P (x, z)

Weak Shortcut P1 . . . Pn [P1(x, z1) ∧ P2(z1, z2) ∧ . . . ∧ Pn−1(zn−1, y)] ⊃ P (x, y)

Strong Shortcut P1 . . . Pn P (x, y) ≡ ∃z1 . . . zn−1[P1(x, z1) ∧ P2(z1, z2) ∧ . . . ∧ Pn−1(zn−1, y)]

Table 2: Translation into first-order logic of the specification of CRM property P.

In the CRM specification, meta-properties are specified in the context of their domain properties. The
specification gives the name of the meta-property and its range.

As shown in Table 2, meta-properties are modelled as 3-place predicate symbols: the first two places are
given to the terms in the domain property, the last place is used for the type. The corresponding axiom
includes in the consequent the assertion of the domain property, thus making it possible to omit it whenever
a typing statment is present.

3.2 Shortcuts

Some properties realize shortcuts. For instance3, “Type assignment events allow a more detailed path from
E1 CRM Entity through P41 classified (was classified), E17 Type Assignment, P42 assigned (was assigned by)
to E55 Type for assigning types to objects compared to the shortcut offered by P2 has type (is type of).”
We call the property offering the shortcut (e.g., P2 in the previous example), the shortcut property, and the
corresponding path we call shortcut path.

Moreover, shortcuts come in two sorts:

• strong shortcuts, in which there is perfect equivalence between the shortcut property and the shortcut
path; and

• weak shortcuts, in which the shortcut path implies the shortcut property, but not viceversa.

An example of weak shortcut is given by4 “P51 has former or current owner (is former or current owner
of) is a shortcut for the more detailed path from E18 Physical Thing through P24 transferred title of
(changed ownership through), E8 Acquisition, P23 transferred title from (surrendered title through), or P22
transferred title to (acquired title through) to E39 Actor”. Not everytime someone is the current owner
of something there has been a change of ownership.

A strong shortcut is interpreted as an abbreviation, therefore translated as an equivalence axiom between
the shortcut property and the specified path. In the first example above, the equivalence axiom is given by:

P2(x, y) ≡ ∃z1[P41(x, z1) ∧ P42(z1, y)]

3pag. 47-48
4pag. 50

3

Note that, unlike the specification, we omit to state the type of the intermediate nodes because that type
has already been declared as the range of the corresponding property. Also note that the usage of a shortcut
requires the introduction of n− 1 unknown individual constants or existentially quantified variables, one for
each node on the shortcut’s path.

Weak shortcut are instead interpreted as implications from the path to the shortcut predicate. In the last
example, the axiom is given by:

[P24(x, y) ∧ (P23(y, z) ∨ P22(y, z))] ⊃ P51(x, z)

The general forms of the translation of shortcuts is given in Table 2. Notice that weak shortcuts do not
require existential variables, due to the semantics of conditionals.

3.3 Symmetry

Symmetry is translated as customary.

Some asymmetry statements are coupled with the declaration of meta-properties, for this reason they are
indicated as “asymmetric meta-property” in Table 2. The meaning of such statement is that the property
in whose declaration they occur is symmetric, yet their declared meta-property is asymmetric. This is the
case of properties P69, P139 and P130. The translation of these statements is simply a combination of
asymmetry and meta-property declaration.

3.4 Transitivity

Transitivity is translated as customary.

Properties that have identical domain and range and are not symmetric are transitive, the only exception
to this rule being property P114, which is symmetric and transitive.

No other property is transitive.

3.5 Property quantification

The CRM specification includes constraints on the cardinality of properties, named “quantification” state-
ments. For self-containedness, the definitions of these contraints is reported for self-containedness in ap-
pendix, in Table 75.

For the translation in logic of the property quantifiers, we follow a two step approach:

1. In the first step, we reduce the definition of each quantifier to an equivalent set of simpler statements.
This is done in Table 8, also given in the appendix. As a result of this step, we have two simpler
statements, total property and functional property, that can be applied to the property or to its inverse.
Therefore a property or its inverse adheres to one of the following cases:

(a) the property is only total, i.e., defined on every element of its domain, but can take up more than
one value;

(b) the property is only functional, i.e., at most one value is provided for any element of its domain;

(c) the property is neither total, i.e., some domain elements can miss it, nor functional, i.e., more
than one value can be provided for any element of its domain;

5pag. xii-xiii

4

(d) the property is both total and functional, i.e.all domain element must have one value for it, and
no more than one.

2. In the second step, we translate each of the simpler statements obtained in the previous step in first-
order logic. We have (as usual, variables are existentially quantified unless otherwise specified):

• P is a functional property: [P (x, y) ∧ P (x′, y)] ⊃ (x = x′)

• P is a total property (having domain A): A(x) ⊃ ∃yP (x, y)

• the inverse of P is a functional property: [P (x, y) ∧ P (x, y′)] ⊃ (y = y′)

• the inverse of P is a total property (having range A): A(x) ⊃ ∃yP (y, x)

The complete translation of each quantifier can then be obtained by conjoining the translation of the corre-
sponding simpler statements. For instance:

• many to many (0,n:0,n): no axiom is required

• one to one (1,1:1,1) means that both P and its inverse are total and functional (here A and B are the
domain and the range pf property P, respectively). We then have the translation:

A(x) ⊃ ∃yP (x, y)

[P (x, y) ∧ P (x′, y)] ⊃ (x = x′)

B(x) ⊃ ∃yP (y, x)

[P (x, y) ∧ P (x, y′)] ⊃ (y = y′)

where the first two axioms capture totality and functionality of P, respectively, and the last two do
the same for the inverse of P.

4 Validation

Every class and every property is consistent. The ontology is consistent

Then, we need to find some test that the formalization respects the intuition, some reasoning patterns.

Properties that we expect to be satisfied by any KB, can be proved to hold.

5 The OWL ontology CRM

Having expressed the CRM in the neutral language of first-order logic, we now proceed to encode the resulting
first-order theory in OWL, with the objective of making a step towards the implementation of the CRM.
This is clearly not the only way of implementing the CRM, but it presents at least two advantages: first,
existing implementations of OWL can be used to manage the creation and the evolution of instances of the
CRM; second, the SPARQL query language can be used to extract information from instances of the CRM
at no cost.

Our OWL encoding of the CRM, which is called the CRM ontology, is given in the functional notation [2]. In
order to derive it, we proceed in the obvious way by translating the logic formulae derived in Section 2 and
3 into OWL axioms. As it will be shown, the so obtained axioms are not the only needed ones.

We will use crm: as the prefix for the CRM namespace, that is the namespace containing the URIs of the
OWL classes and properties corresponding to the CRM classes and properties.

5

CRM Specification Translation into first-order logic OWL Specification

Class En c-name Unary Predicate En Declaration(Class(crm:En))

A Superclass of B B(x) ⊃ A(x) SubClassOf(B A)

A Subclass of B A(x) ⊃ B(x) SubClassOf(A B)

Table 3: Translation of class specification into OWL

SubClassOf(crm:E1 owl:Thing)

SubClassOf(crm:E41 rdf:Literals)

SubClassOf(crm:E59 rdf:Literals)

SubClassOf(owl:real crm:E60)

Table 4: The Class Mapping Axioms

5.1 Translation of class specifications

CRM classes find their natural correspondents in OWL classes, therefore it seems natural to establish a
one-to-one correspondence between the former and the latter. This correspondence is reflected in the first
row of Table ?? which establishes that each class be declared by means of an OWL declaration statement.
The subsequent rows give the OWL encoding of sub- or super-class statements.

In the rest of this Section we will present two more sets of axioms required for the proper encoding of the
CRM classes in OWL.

5.1.1 Mapping axioms

OWL comes with built-in classes whose intended meaning overlaps with the intended meaning of some CRM
classes. We need therefore to capture this fact by declaring the proper relationship between the involved
(OWL correspondents of) CRM classes and their related OWL built-in classes. These declarations take the
form of OWL axioms, called class mapping axioms.

The list of OWL 2 reserved names is given in Appendix, in Table 9. These includes the built-in classes.
Based on these, we have the following mapping axioms:

• E1 CRM Entity is translated into the OWL class crm:E1 which is declared as a subclass of owl:Thing.

• E41 Appellation is translated into the OWL class crm:E41 which is declared as a subclass of rdf:Literals.

• Analogously to appellations, E59 Primitive Value is translated into the OWL class crm:E59 which is
declared as a subclass of rdf:Literals.

• E60 Number is translated into the OWL class crm:E60 which is declared to be a superclass of owl:real
since it includes also complex numbers, vectors and tensors.

Table 4 gives the resulting class mapping axioms.

There are other classes in the CRM specification that model data values and can be translated into XML
Schema datatypes. A notable example is class E50 Date which finds a natural correspondent in xsd:date.
Since datatypes lie outside OWL proper, we do not specify these correspondences here, although it clearly
seems a good practice to rely on the XML Schema type system for implementing the CRM.

6

CRM Specification Translation into OWL

Property Pn p-name Declaration(DataProperty(crm:Pn)) or

Declaration(ObjectProperty(crm:Pn))

P has Domain C ObjectPropertyDomain(crm:Pn crm:C)

P has Range D ObjectPropertyRange(crm:Pn crm:D)

P is a Superproperty of Q SubObjectPropertyOf(crm:Q crm:Pn)

P is a Subproperty of Q SubObjectPropertyOf(crm:Pn crm:Q)

Quantification see Section 5.2.3

P has Meta-Property P.n: C see Section 5.2.2

P is Symmetric SymmetricObjectProperty(crm:Pn) ?

P has Asymmetric
Meta-Property P.n: C

see Section 5.2.2

P is Transitive TransitiveObjectProperty(crm:Pn)

Weak Shortcut P1 . . . Pn SubObjectPropertyOf(ObjectPropertyChain(crm:P1 ... crm:Pn) crm:Pn)

Strong Shortcut P1 . . . Pn see Section 5.2.4

Table 5: Translation into OWL of the specification of CRM property P.

5.1.2 Class disjointness axioms

The CRM disjointness statements are translated in the following class disjointness axioms:

• E2 Temporal Entity is disjoint from E77 Persistent Item: DisjointClasses(crm:E2 crm:E77)

• E18 Physical Thing is disjoint from E28 Conceptual Object: DisjointClasses(crm:E18 crm:E28)

5.2 Translation of property specifications

5.2.1 Data vs. object properties

Similarly to CRM classes, CRM properties find their natural correspondents in OWL properties. However,
OWL distinguishes between two kinds of properties:

• object properties, connecting two individuals, and

• data properties, connecting an individual and a literal.

Therefore it must be determined, for each CRM property, whether it is encoded as an OWL object or data
property. Upon discussing mapping axioms, we have established that the correspondents of E41 Appellation
and E59 Primitive Value are sub-classes of rdf:Literals. To be consistent with this determination, we
must now settle that all properties having either crm:E41, or crm:E59, or a subclass of theirs, be translated
in OWL as data properties, and all remaining properties be translated into OWL object properties. This is
reflected in the first two rows of Table 5, which unlike Table 3, does not report the first-order translation
for reasons of space. For the same reason, from the second row down, it is assumed that the involved CRM
property P is mapped onto an object property. When the same construct is not available for data properties,
the OWL translation is marked with a star.

7

P is functional FunctionalObjectProperty(crm:P) or FunctionalDataProperty(crm:P)

P is total on A SubClassOf(crm:A ObjectSomeValuesFrom(crm:P owl:Thing))

the inverse of P is functional InverseFunctionalObjectProperty(crm:P)

the inverse of P is total on A SubClassOf(crm:A ObjectSomeValuesFrom(ObjectInverseOf(crm:P) owl:Thing))

Table 6: Property quantification axioms in OWL

5.2.2 Meta-properties modeling in OWL

We recall from Section 3.1 that a meta-property P.n of a property P is a property that associates an instance
(a, b) of P with a value c in the meta-property range. As such it can be modeled in OWL via reification,
that is by a class CP.n each instance of which stands for an instance of P and is connected to the individual
c above via meta-property P.n. More technically:

1. for each object meta-property P.n of a property P, the following declarations are required:

Declaration(Class(crm:CP.n))

Declaration(ObjectProperty(crm:P1.n))

Declaration(ObjectProperty(crm:P2.n))

Declaration(ObjectProperty(crm:P.n))

2. for each instance (a, b, c) of the meta-property P.n, the following assertions are created, where I is the
anonymous individual that reifies the meta-property instance:

ClassAssertion(crm:CP.n I)

ObjectPropertyAssertion(crm:P1.n I a)

ObjectPropertyAssertion(crm:P2.n I b)

ObjectPropertyAssertion(crm:P.n I c)

ObjectPropertyAssertion(crm:P a b)

3. if the meta-property is asymmetric, then the following assertion must be added:

NegativeObjectPropertyAssertion(crm:P.n c I)

The assumption here is that the same anonymous individual I is used to reify the instance (a, b) of P. A
proper user interface may facilitate the enforcement of this assumption.

All the above assertions cannot be obtained as implicit knowledge via axioms, thus their insertion in the
ontology has to be performed procedurally.

5.2.3 Property quantification

We recall from Section 3.5 that the specification of the CRM describe properties, or their inverses, as
functional or total. The corresponding OWL axioms are given in Table 5.2.3. We recall that the inverse of
a data property is not expressible in OWL.

5.2.4 Strong shortcuts

Strong shortcuts are equivalence statements consisting of an if and an only-if part. For example, let us
consider the strong shortcut:

8

P2 has type: P41 classified, P42 assigned

for assigning types to objects. The only-if part of the equivalence is a weak shortcut and is captured by the
axiom (cf. Table 5):

SubObjectPropertyOf(ObjectPropertyChain(crm:P41 crm:P42) crm:P2)

On the contrary, for each instance (a, b) of the property expressed via the assertion:

ObjectPropertyAssertion(crm:a P2 crm:b)

the if part of the equivalence implies the following assertions:

ObjectPropertyAssertion(crm:a P41 :a1)

ObjectPropertyAssertion(:a1 P42 crm:b)

where :a1 is an anonymous individual. While these assertions can be expressed on an individual basis,
there is no way of obtaining them as implicit knowledge via some axioms.

5.3 Conclusions

In this section, we have presented CRM, an OWL ontology including the axioms that capture the semantics
of the CRM vocabulary. In particular, CRM includes the following sets of axioms:

• class axioms: these are the axioms capturing the semantics of CRM classes, derived based on the rules
given in Table 3;

• class mapping axioms: these are the axioms establishing the proper connection between the CRM
classes and the OWL built-in classes, they are given in Table 4;

• class disjointness axioms: these are the axioms expressing the disjointness constraints between CRM
classes, they are given in Section 5.1.2;

• property axioms: these are the axioms capturing the semantics of CRM properties, derived based on
the rules given in Tables 5 and 6.

The full expression of the CRM is not possible in OWL, since neither strong shortcuts nor meta-properties
are directly expressible.

The problem is not severe for meta-properties; in fact, meta-property instances never result as implicit
knowledge, they always result from manual insertion, and it is a simple matter to extend each such manual
insertion with the automatic insertion of the statements presented in Section 5.2.2 above.

For shortcuts, the problem is in principle much more severe than the previously discussed meta-property
problem, because a shortcut property instance may result as implicit knowledge, therefore the insertion of
the corresponding assertions is considerably more difficult.

9

many to many
(0,n:0,n)

Unconstrained: An individual domain instance and range instance of this property can have
zero, one or more instances of this property. In other words, this property is optional and
repeatable for its domain and range.

one to many
(0,n:0,1)

An individual domain instance of this property can have zero, one or more instances of this
property, but an individual range instance cannot be referenced by more than one instance
of this property. In other words, this property is optional for its domain and range, but
repeatable for its domain only. In some contexts this situation is called a “fan-out”.

many to one
(0,1:0,n)

An individual domain instance of this property can have zero or one instance of this property,
but an individual range instance can be referenced by zero, one or more instances of this
property. In other words, this property is optional for its domain and range, but repeatable
for its range only. In some contexts this situation is called a “fan-in”.

many to many,
necessary
(1,n:0,n)

An individual domain instance of this property can have one or more instances of this
property, but an individual range instance can have zero, one or more instances of this
property. In other words, this property is necessary and repeatable for its domain, and
optional and repeatable for its range.

one to many,
necessary
(1,n:0,1)

An individual domain instance of this property can have one or more instances of this
property, but an individual range instance cannot be referenced by more than one instance
of this property. In other words, this property is necessary and repeatable for its domain,
and optional but not repeatable for its range. In some contexts this situation is called a
“fan-out”.

many to one,
necessary
(1,1:0,n)

An individual domain instance of this property must have exactly one instance of this
property, but an individual range instance can be referenced by zero, one or more instances
of this property. In other words, this property is necessary and not repeatable for its domain,
and optional and repeatable for its range. In some contexts this situation is called a “fan-in”.

one to many,
dependent
(0,n:1,1)

An individual domain instance of this property can have zero, one or more instances of
this property, but an individual range instance must be referenced by exactly one instance
of this property. In other words, this property is optional and repeatable for its domain,
but necessary and not repeatable for its range. In some contexts this situation is called a
“fan-out”.

one to many,
necessary,
dependent
(1,n:1,1)

An individual domain instance of this property can have one or more instances of this
property, but an individual range instance must be referenced by exactly one instance of
this property. In other words, this property is necessary and repeatable for its domain,
and necessary but not repeatable for its range. In some contexts this situation is called a
“fan-out”.

many to one,
necessary,
dependent
(1,1:1,n)

An individual domain instance of this property must have exactly one instance of this
property, but an individual range instance can be referenced by one or more instances of
this property. In other words, this property is necessary and not repeatable for its domain,
and necessary and repeatable for its range. In some contexts this situation is called a
“fan-in”.

one to one
(1,1:1,1)

An individual domain instance and range instance of this property must have exactly one
instance of this property. In other words, this property is necessary and not repeatable for
its domain and for its range.

Table 7: Property Quantifiers in the CRM specification

10

many to many
(0,n:0,n)

Unconstrained: An individual domain instance and range instance of this property can have
zero, one or more instances of this property. −→ No axiom is required (Nax for short)

one to many
(0,n:0,1)

An individual domain instance of this property can have zero, one or more instances of this
property, −→ Nax
but an individual range instance cannot be referenced by more than one instance of this
property. −→ Inverse functional

many to one
(0,1:0,n)

An individual domain instance of this property can have zero or one instance of this property,
−→ Functional
but an individual range instance can be referenced by zero, one or more instances of this
property. −→ Nax

many to many,
necessary
(1,n:0,n)

An individual domain instance of this property can have one or more (must have at least
one?) instances of this property, −→ Total
but an individual range instance can have zero, one or more instances of this property. −→
Nax

one to many,
necessary
(1,n:0,1)

An individual domain instance of this property can have one or more (must have at least
one?) instances of this property, −→ Total
but an individual range instance cannot be referenced by more than one instance of this
property. −→ Inverse functional

many to one,
necessary
(1,1:0,n)

An individual domain instance of this property must have exactly one instance of this
property, −→ Total Functional
but an individual range instance can be referenced by zero, one or more instances of this
property. −→ Nax

one to many,
dependent
(0,n:1,1)

An individual domain instance of this property can have zero, one or more instances of this
property, −→ Nax
but an individual range instance must be referenced by exactly one instance of this property.
−→ Inverse Total Functional

one to many,
necessary,
dependent
(1,n:1,1)

An individual domain instance of this property can have one or more instances of this
property, −→ Total
but an individual range instance must be referenced by exactly one instance of this property.
−→ Inverse Total Functional

many to one,
necessary,
dependent
(1,1:1,n)

An individual domain instance of this property must have exactly one instance of this
property, −→ Total Functional
but an individual range instance can be referenced by one or more instances of this property.
−→ Inverse Total

one to one
(1,1:1,1)

An individual domain instance and range instance of this property must have exactly one
instance of this property. −→ Total Functional −→ Inverse Total Functional

Table 8: Break-down of the Property Quantifiers definitions

11

owl:backwardCompatibleWith owl:bottomDataProperty owl:bottomObjectProperty owl:deprecated owl:incompatibleWith

owl:Nothing owl:priorVersion owl:rational owl:real owl:versionInfo

owl:Thing owl:topDataProperty owl:topObjectProperty rdf:langRange rdf:PlainLiteral

rdf:XMLLiteral rdfs:comment rdfs:isDefinedBy rdfs:label rdfs:Literal

rdfs:seeAlso xsd:anyURI xsd:base64Binary xsd:boolean xsd:byte

xsd:dateTime xsd:dateTimeStamp xsd:decimal xsd:double xsd:float

xsd:hexBinary xsd:int xsd:integer xsd:language xsd:length

xsd:long xsd:maxExclusive xsd:maxInclusive xsd:maxLength xsd:minExclusive

xsd:minInclusive xsd:minLength xsd:Name xsd:NCName xsd:negativeInteger

xsd:NMTOKEN xsd:nonNegativeInteger xsd:nonPositiveInteger xsd:normalizedString xsd:pattern

xsd:positiveInteger xsd:short xsd:string xsd:token xsd:unsignedByte

xsd:unsignedInt xsd:unsignedLong xsd:unsignedShort

Table 9: Reserved Vocabulary of OWL 2 with Special Treatment

A Tables

References

[1] Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau. OWL 2 Web Ontology Language
direct semantics (second edition). Technical report, W3C Recommendation, 11 December 2012. http:

//www.w3.org/TR/owl2-direct-semantics/.

[2] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontology Language. structural
specification and functional-style syntax (second edition). Technical report, W3C Recommendation, 11
December 2012. http://www.w3.org/TR/owl2-syntax/.

12

